4.统计学习要素:数据挖掘、推理和预测(The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition)——Trevor Hastie, Robert Tibshirani, Jerome Friedman
又一本经典教材,我使用的版本印刷得非常好,具有很高的参考价值。
5.模式识别与机器学习(Pattern Recognition and Machine Learning (Information Science and Statistics))——Christopher M. Bishop
Christopher M. Bishop编写的模式识别和机器学习(信息科学和统计学)也是一本深入浅出且非常完善的书籍,参考价值高。
6.机器学习:理解数据的算法中的艺术和科学(Machine Learning: The Art and Science of Algorithms that Make Sense of Data)——Peter Flach
1.统计学习理论的本质(The Nature Of Statistical Learning Theory)——Vladimir Vapnik
2.模式分类(Pattern Classification)——Richard O Duda
3.机器学习:算法透视(Machine Learning: An Algorithmic Perspective, Second Edition (Chapman & Hall/Crc Machine Learning & Pattern Recognition))——Stephen Marsland
4.统计学习要素:数据挖掘、推理和预测(The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition)——Trevor Hastie, Robert Tibshirani, Jerome Friedman
5.模式识别与机器学习(Pattern Recognition and Machine Learning (Information Science and Statistics))——Christopher M. Bishop
6.机器学习:理解数据的算法中的艺术和科学(Machine Learning: The Art and Science of Algorithms that Make Sense of Data)——Peter Flach