前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Auto Machine Learning初探

Auto Machine Learning初探

作者头像
sladesal
发布2019-12-12 17:58:34
8920
发布2019-12-12 17:58:34
举报
文章被收录于专栏:机器学习之旅

前言

最近在看AutoML,业界在 automl 上的进展还是很不错的,个人比较看好这个方向,所以做了一些了解:

  • Google: Cloud AutoML, Google’s Prediction API
  • Microsoft: Custom Vision, Azure Machine Learning
  • Amazon: Amazon Machine Learning
  • BaiDu:EasyE
  • Alibaba Group:PAI
  • others: BigML.com, Wise.io, SkyTree.com, RapidMiner.com, Dato.com, Prediction.io, DataRobot.com,H2O.AI

github上的开源项目也是有不少的,我所看到的包括:

  • tpot
    • 多项式特征组合
    • 无监督特征筛选
    • 集成分类
  • auto_ml
    • 集成分类
    • 可选深度模型前置
  • auto_sklearn
    • 特征清洗
    • 特征筛选
    • 元学习前置
    • 超参数自动学习
    • 自动集成分类

auto_sklearn

上述开源项目中,我主要看了auto_sklearn,对他的架构设计,算法设计还是很感兴趣的,论文在这边Efficient and Robust Automated Machine Learning

image

  • meta-learning
    • 这边auto_sklearn已经内置诺干个参数选配好了的模型(可能是手动调参数,也有可能是也通过贝叶斯优化的方法在小样本上选择),我们实际去用的时候是根据元特征相似度进行选择即可
      • 《Initializing Bayesian Hyperparameter Optimization via Meta-Learning》指出可以用L1和特征协方差来筛选,聪明的你一定发现,对离散值真不友好
    • 元特征就是站在常规数据之上的汇总信息:

    image

  • 常规 ML framework 如下图灰色部分:导入数据-数据清洗-特征工程-分类器-输出预测值
    • 这边都是常规操作,我扩充了他里面的各种方法,总结在数据预处理
  • Bayesian optimizer
    • 这个等下细讲,是这个论文中最有价值的地方之一
  • build-ensemble
    • 模型集成

Bayesian optimizer

通常我们在参数尝试的时候都是依赖如下:

  • 暴力法
    • Grid Search 网格搜索/穷举搜索
    • Random Search 随机搜索
  • Bayesian Optimization
    • 能利用先验知识高效地调节超参数,通过减少计算任务而加速寻找最优参数的进程。不依赖人为猜测所需的样本量为多少,优化技术基于随机性,概率分布
  • Neural Network
    • 用深度神经网络代替常规配置,通过线性+非线性变化拟合任何曲线

Bayesian optimizer在实际被应用的过程中使用的较多,是实现自动参数选择的核心,让我们来仔细看下,伪代码:

  1. 构建超参数与优化函数的关系(代理函数):比如gbdt中的树数量与output的AUC之间的函数f,这一般都是模型,黑盒的
  2. 随机初始化原始数据集合
  3. 通过高斯过程/随机森林等对代理函数进行建模
  4. 设计acquisition function,(EI,UCB,TS等),获取最大acquisition function对于假设数据集作为新增数据集
  5. 把新增数据集扩充到2中的数据集中重复更新整个过程

上述代码实现,非常简单,完整代码自取GP_Bayes_Optimizaion

init

代码语言:javascript
复制
init_xs = np.random.uniform(bound_dict.get("x", [0, 0])[0],bound_dict.get("x", [1, 1])[1],size=self.init_point_number)
init_ys = np.random.uniform(bound_dict.get("y", [0, 0])[0], bound_dict.get("y", [1, 1])[1],size=self.init_point_number)
init_points = zip(init_xs, init_ys)
init_labels = map(self.target_loss_function, init_xs)
train_features = np.asarray(list(init_points))
train_negative_loss = np.asarray(list(init_labels))
current_max_negative_loss = max(train_negative_loss)

Acquision function computes the max value

代码语言:javascript
复制
x_tries = np.random.uniform(bounds[:, 0], bounds[:, 1], size=(100000, bounds.shape[0]))
mean, std = gp.predict(x_tries, return_std=True)
acquisition_fucntion_values = self.Acquision_function(mean, std)
x_max = x_tries[np.argmax(acquisition_fucntion_values)]
max_acquision_fucntion_value = max(acquisition_fucntion_values)
x_max = np.clip(x_max, bounds[:, 0], bounds[:, 1])

因为我写的是简单的高斯过程这种形式,很多人对高斯过程为什么能拟合出方差均值不清楚,我手写了一些推导过程高斯过程回归

Bayesian optimizer来解决这类问题,有很多的优点的:

  • 利用先验知识高效地调节超参数,每个试验不独立,有点boost味道
  • 通过高效的猜测而加速寻找最优参数的进程
  • 数据要求低,在目标函数未知且计算复杂度高的情况下极其强大
  • 泛化性/鲁棒性好,不易陷入局部最优

其他优秀资料

  • Efficient and Robust Automated Machine Learning
  • User Modeling and Hierarchical Reinforcement Learning
  • Practical Bayesian Optimization of Machine Learning Algorithms
  • Initializing Bayesian Hyperparameter Optimization via Meta-Learning
  • A Conceptual Explanation of Bayesian Hyperparameter Optimization for Machine Learning
  • Automated Machine Learning Hyperparameter Tuning in Python

auto-sklearn快速体验

代码语言:javascript
复制
>>> import autosklearn.classification
>>> import sklearn.model_selection
>>> import sklearn.datasets
>>> import sklearn.metrics
>>> X, y = sklearn.datasets.load_digits(return_X_y=True)
>>> X_train, X_test, y_train, y_test = \
        sklearn.model_selection.train_test_split(X, y, random_state=1)
>>> automl = autosklearn.classification.AutoSklearnClassifier()
>>> automl.fit(X_train, y_train)
>>> y_hat = automl.predict(X_test)
>>> print("Accuracy score", sklearn.metrics.accuracy_score(y_test, y_hat))

欢迎大家关注我的个人bolg知乎,更多代码内容欢迎follow我的个人Github,如果有任何算法、代码疑问都欢迎通过邮箱发消息给我。

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 前言
  • auto_sklearn
  • Bayesian optimizer
  • 其他优秀资料
  • auto-sklearn快速体验
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档