Loading [MathJax]/jax/input/TeX/config.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
社区首页 >专栏 >Python matplotlib绘制折线图

Python matplotlib绘制折线图

作者头像
Python碎片公众号
发布于 2021-02-26 08:02:06
发布于 2021-02-26 08:02:06
5.7K00
代码可运行
举报
运行总次数:0
代码可运行

matplotlib是Python中的一个第三方库。主要用于开发2D图表,以渐进式、交互式的方式实现数据可视化,可以更直观的呈现数据,使数据更具说服力。

一、安装matplotlib

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
pip install matplotlib -i https://pypi.tuna.tsinghua.edu.cn/simple

二、matplotlib图像简介

matplotlib的图像分为三层,容器层、辅助显示层和图像层。

1. 容器层主要由Canvas、Figure、Axes组成。

Canvas位于图像的最底层,充当画布的作用。

Figure位于Canvas之上,指画布上的一整张图像。

Axes位于Figure之上,指Figure中的单个图表,一个Figure中可以有一个或多个Axes,即一张图像中可以有一个或多个图表。

2. 辅助显示层是单个图表(Axes)中用来提供辅助信息的层。

辅助显示层主要包括Axes外观(facecolor)、边框线(spines)、坐标轴(axis)、坐标轴名称(axis label)、坐标轴刻度(tick)、坐标轴刻度标签(tick label)、网格线(grid)、图例(legend)、标题(title)等内容。

辅助层可使图像显示更加直观,提高可读性。

3. 图像层指Axes内通过plot、scatter、bar、histogram、pie等函数绘制出的图形。

三、matplotlib绘制折线图

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
# coding=utf-8
import matplotlib.pyplot as plt


plt.figure(figsize=(20, 10), dpi=100)
game = ['1-G1', '1-G2', '1-G3', '1-G4', '1-G5', '2-G1', '2-G2', '2-G3', '2-G4', '2-G5', '3-G1', '3-G2', '3-G3',
        '3-G4', '3-G5', '总决赛-G1', '总决赛-G2', '总决赛-G3', '总决赛-G4', '总决赛-G5', '总决赛-G6']
scores = [23, 10, 38, 30, 36, 20, 28, 36, 16, 29, 15, 26, 30, 26, 38, 34, 33, 25, 28, 40, 28]
plt.plot(game, scores)
plt.show()

运行结果:

figure(): 创建图像并设置图像的大小等属性,返回一张图像,可以传入很多参数,常用参数有两个。figsize参数传入一个元组(width, height),设置图像的大小。dpi传入一个整数值,设置图像的清晰度。

plot(): matplotlib中绘制折线图的函数。可以传入很多参数,一般传入两个列表,分别是折线图中的x值和y值。上面的例子中用了NBA2020年季后赛James的得分数据。

show(): 展示图像。

在上面的图表中,x坐标值中有中文,首次使用matplotlib绘图时中文无法正常显示。要解决中文显示问题,需要下载安装SimHei字体,下载链接:https://www.zitijia.com/i/281258939050380345.html,或直接搜索SimHei然后找一个正确的网站下载。下载完成后,在Windows下直接解压双击安装。安装完成后删除~/.matplotlib中的缓存文件,并创建配置文件matplotlibrc,将matplotlibrc中的内容设置为如下内容。

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
font.family         : sans-serif
font.sans-serif     : SimHei
axes.unicode_minus  : False

操作命令如下截图,完成后图像中就可以正常显示中文了。

使用上面的代码,已经实现了简单的折线图,但展示的效果很差,所以需要进行优化,使图像展示得更好。

四、matplotlib优化折线图

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
import matplotlib.pyplot as plt


plt.figure(figsize=(20, 10), dpi=100)
game = ['1-G1', '1-G2', '1-G3', '1-G4', '1-G5', '2-G1', '2-G2', '2-G3', '2-G4', '2-G5', '3-G1', '3-G2', '3-G3',
        '3-G4', '3-G5', '总决赛-G1', '总决赛-G2', '总决赛-G3', '总决赛-G4', '总决赛-G5', '总决赛-G6']
scores = [23, 10, 38, 30, 36, 20, 28, 36, 16, 29, 15, 26, 30, 26, 38, 34, 33, 25, 28, 40, 28]
plt.plot(game, scores, c='red')
plt.scatter(game, scores, c='red')
y_ticks = range(50)
plt.yticks(y_ticks[::5])
plt.grid(True, linestyle='--', alpha=0.5)
plt.xlabel("赛程", fontdict={'size': 16})
plt.ylabel("得分", fontdict={'size': 16})
plt.title("NBA2020季后赛詹姆斯得分", fontdict={'size': 20})
plt.show()

运行结果:

在使用plot()函数绘图时,可以通过c='颜色'来设置折线图的颜色。

scatter(): 绘制散点图。折线图是用直线连接相邻的两个点形成的,但是连成折线后点的显示不明显。scatter可以单独对点进行设置,展示得更明显。

yticks(): 用于设置y轴坐标的范围,传入一个可迭代对象(如range()函数)。最开始绘制的折线图中,图像的y轴坐标范围是数据的范围,坐标原点不是0,使用yticks函数可以设置想要的坐标范围。同理xticks可以用于设置x轴坐标的范围。

grid(): 用于设置图表中的网格线,使用linestyle参数设置网格线的样式,常用的样式有下表中的几种,plot()函数中也可以用linestyle参数设置折线图的样式。使用alpha参数设置网格线的透明度。

样式

字符

实线

-

虚线

- -

点划线

-.

点虚线

:

xlabel(): 用于设置x轴的标签,说明x轴坐标的含义,第一个参数传入需要设置的标签值,后面可以通过其他参数设置显示的效果,如字体大小等。ylabel同理。

title(): 用于设置折线图的标题,说明这张折线图展示的数据。用法同xlabel。

五、matplotlib绘制多条折线图

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
import matplotlib.pyplot as plt


plt.figure(figsize=(20, 10), dpi=100)
game = ['1-G1', '1-G2', '1-G3', '1-G4', '1-G5', '2-G1', '2-G2', '2-G3', '2-G4', '2-G5', '3-G1', '3-G2', '3-G3',
        '3-G4', '3-G5', '总决赛-G1', '总决赛-G2', '总决赛-G3', '总决赛-G4', '总决赛-G5', '总决赛-G6']
scores = [23, 10, 38, 30, 36, 20, 28, 36, 16, 29, 15, 26, 30, 26, 38, 34, 33, 25, 28, 40, 28]
rebounds = [17, 6, 12, 6, 10, 8, 11, 7, 15, 11, 6, 11, 10, 9, 16, 13, 9, 10, 12, 13, 14]
assists = [16, 7, 8, 10, 10, 7, 9, 5, 9, 7, 12, 4, 11, 8, 10, 9, 9, 8, 8, 7, 10]
plt.plot(game, scores, c='red', label="得分")
plt.plot(game, rebounds, c='green', linestyle='--', label="篮板")
plt.plot(game, assists, c='blue', linestyle='-.', label="助攻")
plt.scatter(game, scores, c='red')
plt.scatter(game, rebounds, c='green')
plt.scatter(game, assists, c='blue')
plt.legend(loc='best')
plt.yticks(range(0, 50, 5))
plt.grid(True, linestyle='--', alpha=0.5)
plt.xlabel("赛程", fontdict={'size': 16})
plt.ylabel("数据", fontdict={'size': 16})
plt.title("NBA2020季后赛詹姆斯数据", fontdict={'size': 20})
plt.show()

运行结果:

要在同一张图像中展示多条折线图,多次调用plot()函数就行。每条折线图的颜色、样式等可以分别设置,以便更好地进行区分。

legend(): 展示图例,通过loc参数传入图例在图表中展示的位置,可以传入的值有‘best’, 'upper right', 'upper left', 'lower left', 'lower right', 'right', 'center left', 'center right', 'lower center', 'upper center', 'center',这十一个值分别对应数字0~10,传值时也可以传对应的数字,后面十个值都指定了图例的位置,'best'表示自适应,会自动根据图像的分布在后面的十个值中选择一个,大部分为右上角'upper right'。

为了使用图例,在每次调用plot()函数绘制折线图时,需要使用label参数给折线图添加标签,在图例中展示。有多条折线图时,图例可以用于区分每条折线图表示的含义,如将James的得分和篮板、助攻展示在同一张图中。

六、matplotlib绘制多张折线图

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
import matplotlib.pyplot as plt


fig, axs = plt.subplots(nrows=1, ncols=3, figsize=(20, 6), dpi=100)
game = ['1-G1', '1-G2', '1-G3', '1-G4', '1-G5', '2-G1', '2-G2', '2-G3', '2-G4', '2-G5', '3-G1', '3-G2', '3-G3',
        '3-G4', '3-G5', '总决赛-G1', '总决赛-G2', '总决赛-G3', '总决赛-G4', '总决赛-G5', '总决赛-G6']
scores = [23, 10, 38, 30, 36, 20, 28, 36, 16, 29, 15, 26, 30, 26, 38, 34, 33, 25, 28, 40, 28]
rebounds = [17, 6, 12, 6, 10, 8, 11, 7, 15, 11, 6, 11, 10, 9, 16, 13, 9, 10, 12, 13, 14]
assists = [16, 7, 8, 10, 10, 7, 9, 5, 9, 7, 12, 4, 11, 8, 10, 9, 9, 8, 8, 7, 10]
y_data = [scores, rebounds, assists]
colors = ['red', 'green', 'blue']
line_style = ['-', '--', '-.']
y_labels = ["得分", "篮板", "助攻"]
for i in range(3):
    axs[i].plot(game, y_data[i], c=colors[i], label=y_labels[i], linestyle=line_style[i])
    axs[i].scatter(game, y_data[i], c=colors[i])
    axs[i].legend(loc='best')
    axs[i].set_yticks(range(0, 50, 5))
    axs[i].grid(True, linestyle='--', alpha=0.5)
    axs[i].set_xlabel("赛程", fontdict={'size': 16})
    axs[i].set_ylabel(y_labels[i], fontdict={'size': 16}, rotation=0)
    axs[i].set_title("NBA2020季后赛詹姆斯{}".format(y_labels[i]), fontdict={'size': 20})
fig.autofmt_xdate()
plt.show()

运行结果:

subplots(): 用于在同一张图像中绘制多张图表,通过nrows, ncols两个参数设置图表的张数和排列方式,figsize和dpi同figure()函数。subplots()函数返回两个参数,一个是图像对象fig,一个是可迭代的图表数组axs(类型为numpy中的数组对象)。

每一张图表中的标签、标题、样式、图例等都需要单独设置,为了避免代码过于冗余,可以使用循环。绘制每一张图表时,从axs中取出每一张图表,再调用plot()函数绘图。在设置坐标轴、标签、标题时,使用'set_'开头的方法进行设置,如设置x轴标签用set_xlabel()。

autofmt_xdate(): x轴坐标值自适应倾斜。因为一张图像中有多张图表,x坐标值靠得很近,可能会因重叠造成展示效果差,使用fig对象的autofmt_xdate()方法可以设置自适应倾斜。

以上就是matplotlib实现折线图的简单介绍,更多设置可以参考官网https://matplotlib.org/tutorials/index.html,并多作尝试。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2020-11-27,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 Python 碎片 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
Python matplotlib绘制柱状图
本篇文章使用S10总决赛从8强开始各位置的数据。每一局数据的第一个列表都是胜方数据,第二个列表都是负方数据。
Python碎片公众号
2021/02/26
1.4K0
Python matplotlib绘制柱状图
matplotlib图形的绘制
matplotlib是Python编程语言及其数值数学扩展包 NumPy的可视化操作界面。它利用通用的图形用户界面工具包,如Tkinter, wxPython, Qt或GTK+,向应用程序嵌入式绘图提供了应用程序接口(API)。此外,matplotlib还有一个基于图像处理库(如开放图形库OpenGL)的pylab接口,其设计与MATLAB非常类似--尽管并不怎么好用SciPy就是用matplotlib进行图形绘制。
用户8346838
2021/03/10
2.3K0
趋势(一)利用python绘制折线图
折线图用于在连续间隔或时间跨度上显示定量数值,最常用来显示趋势和关系(与其他折线组合起来)。折线图既能直观地显示数量随时间的变化趋势,也能展示两个变量的关系。
HsuHeinrich
2024/11/23
1880
趋势(一)利用python绘制折线图
Matplotlib
请注意,本文编写于 980 天前,最后修改于 976 天前,其中某些信息可能已经过时。
曼亚灿
2023/05/17
9490
Matplotlib
气象绘图——折线图
本节提要:不满意最开始那一版的折线图教程,所以进行了这一强化版的撰写。主要针对matplotlib中的折线图,对关键字指令升级梳理,希望能帮助新入门的小伙伴。
自学气象人
2023/06/21
5060
气象绘图——折线图
Matplotlib数据可视化:折线图与散点图
对于折线图的绘制,在之前文章的示例中都有使用,在面向对象绘图方法中,一般是创建axes实例后调用plot()方法实现折线图绘制,并通过传递各种参数实现对图像的设置。散点图的绘制通过axes实例的scatter()方法来实现。scatter()方法的参数和参数取值与绘制折线图的plot()方法基本一致,所以本文将两种图放在一起进行介绍。
统计学家
2020/05/25
1.3K0
Matplotlib数据可视化:折线图与散点图
Python绘制折线图
折线图常用与展示数据的连续变化趋势。Python可以使用matplotlib库绘制折线图,并对折线图进行自定义美化。
楚客追梦
2022/11/11
1.8K0
Python绘制折线图
【Python】编程练习的解密与实战(四)
总体而言,Python是一门功能强大、灵活易用的编程语言,适用于各种规模和类型的项目,从小型脚本到大型应用,都能够得心应手。
SarPro
2024/02/20
1710
【Python】编程练习的解密与实战(四)
Python matplotlib绘制直方图
前面的文章介绍了使用matplotlib绘制柱状图,本篇文章继续介绍使用matplotlib绘制直方图。
Python碎片公众号
2021/02/26
1.9K0
Python matplotlib绘制直方图
数据可视化基础与应用-03-matplotlib库从入门到精通01-05
本系列是数据可视化基础与应用的第03篇,主要介绍基于matplotlib实现数据可视化。
用户2225445
2024/03/21
8800
数据可视化基础与应用-03-matplotlib库从入门到精通01-05
盘一盘 Python 系列 5 - Matplotlib
Matplotlib 是 Python 中最基本的可视化工具,官网里 ((https://matplotlib.org/) 有无数好资料,但这不是重点,本文肯定和市面上的所有讲解都不一样。
用户5753894
2019/07/05
2.2K0
盘一盘 Python 系列 5 - Matplotlib
Matplotlib 绘2D图
Matplotlib 是一个非常简单而又完善的开源绘图库。那么它到底有多简单呢? 基本知识 首先官方文档奉上 下面,我们通过 3 行代码绘制一张简单的折线图。 from matplotlib imp
听城
2018/04/27
2.5K0
Matplotlib 绘2D图
一篇文章学会Matplotlib
这个示例演示了如何使用Matplotlib绘制一个折线图。列表x和y分别包含水平和垂直坐标数据,并使用plt.plot()函数连接它们以绘制线条。添加标题、坐标轴标签和刻度标签可以提高图表可阅读性。
GeekLiHua
2025/01/21
2410
Matplotlib的详细使用及原理
Matplotlib是一个Python 2D绘图库,能够以多种硬拷贝格式和跨平台的交互式环境生成出版物质量的图形,用来绘制各种静态,动态,交互式的图表。
@小森
2024/03/15
2220
Matplotlib的详细使用及原理
Python matplotlib绘制散点图
上篇文章介绍了使用matplotlib绘制折线图,参考:Python matplotlib绘制折线图,本篇文章继续介绍使用matplotlib绘制散点图。
Python碎片公众号
2021/02/26
2.5K0
Python matplotlib绘制散点图
干货 | 画论文折线图、曲线图?几个代码模板轻松搞定!
这几天在搞论文图,唉说实话抠图这种东西真能逼死人。坐在电脑前抠上一天越看越丑,最后把自己丑哭了……
短短的路走走停停
2019/11/19
6.1K0
干货 | 画论文折线图、曲线图?几个代码模板轻松搞定!
Python数据可视化入门教程
什么是数据可视化?数据可视化是为了使得数据更高效地反应数据情况,便于让读者更高效阅读,通过数据可视化突出数据背后的规律,以此突出数据中的重要因素,如果使用Python做数据可视化,建议学好如下这四个Python数据分析包,分别是:
张俊红
2023/03/21
2.5K0
Python数据可视化入门教程
12个最常用的matplotlib图例 !!
折线图(Line Plot):用于显示数据随时间或其他连续变量的变化趋势。在实际项目中,可以用于可视化模型性能随着训练迭代次数的变化。
JOYCE_Leo16
2024/03/19
5550
12个最常用的matplotlib图例 !!
(七)Python绘图基础:Matplotlib绘图
        除了使用scatter函数之外,还可以使用plot函数后加参数'o'来实现,代码如下所示:
小点点
2022/12/12
2.1K0
(七)Python绘图基础:Matplotlib绘图
学习Matplotlib看这一份笔记就够了!
Matplotlib 是一个 Python 的 2D绘图库,它以各种硬拷贝格式和跨平台的交互式环境生成出版质量级别的图形。通过 Matplotlib,开发者可以仅需要几行代码,便可以生成绘图,直方图,功率谱,条形图,错误图,散点图等。
刘早起
2020/09/23
10.8K0
学习Matplotlib看这一份笔记就够了!
相关推荐
Python matplotlib绘制柱状图
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档
本文部分代码块支持一键运行,欢迎体验
本文部分代码块支持一键运行,欢迎体验