前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >全球人工智能技术创新大赛【热身赛一】布匹疵点智能识别Baseline

全球人工智能技术创新大赛【热身赛一】布匹疵点智能识别Baseline

作者头像
听城
发布2021-03-02 14:54:42
1.3K0
发布2021-03-02 14:54:42
举报
文章被收录于专栏:杂七杂八

比赛地址:https://tianchi.aliyun.com/competition/entrance/531864/introduction?spm=5176.12281949.1003.16.493e8f15PPTpkV baseline地址:https://github.com/datawhalechina/team-learning-cv/tree/master/DefectDetection (我自己没有在baseline上跑通,后来重新clone yolov5官方镜像,在文中将会提到) yolov5官方地址:https://github.com/ultralytics/yolov5 yolo5中文汉化地址:https://github.com/wudashuo/yolov5

赛题背景

在布匹的实际生产过程中,由于各方面因素的影响,会产生污渍、破洞、毛粒等瑕疵,为保证产品质量,需要对布匹进行瑕疵检测。布匹疵点检验是纺织行业生产和质量管理的重要环节,目前人工检测易受主观因素影响,缺乏一致性;并且检测人员在强光下长时间工作对视力影响极大。由于布匹疵点种类繁多、形态变化多样、观察识别难道大,导致布匹疵点智能检测是困扰行业多年的技术瓶颈。

近年来,人工智能和计算机视觉等技术突飞猛进,在工业质检场景中也取得了不错的成果。纺织行业迫切希望借助最先进的技术,实现布匹疵点智能检测。革新质检流程,自动完成质检任务,降低对大量人工的依赖,减少漏检发生率,提高产品的质量。

本赛场聚焦布匹疵点智能检测,要求选手研究开发高效可靠的计算机视觉算法,提升布匹疵点检验的准确度,降低对大量人工的依赖,提升布样疵点质检的效果和效率。要求算法既要检测布匹是否包含疵点,又要给出疵点具体的位置和类别,既考察疵点检出能力、也考察疵点定位和分类能力。

赛题数据

赛题组深入佛山南海纺织车间现场采集布匹图像,制作并发布大规模的高质量布匹疵点数据集,同时提供精细的标注来满足算法要求。大赛数据涵盖了纺织业中布匹的各类重要瑕疵,每张图片含一个或多种瑕疵。本次比赛主要使用花色布数据,约12000张。

数据示例 花色布数据包含原始图片、模板图片和瑕疵的标注数据。标注数据详细标注出疵点所在的具体位置和疵点类别,,数据示例如下。

enter image description here

训练数据文件结构

我们将提供用于训练的图像数据和识别标签,文件夹结构:

代码语言:javascript
复制
|-- defect Images #存放有瑕疵的图像数据
|-- normal Images #存放无疵点的图像数据,jpeg编码图像文件
|-- Annotations #存放属性标签标注数据
|-- README.md #对数据的详细介绍

数据下载地址guangdong1_round2_train2_20191004_images.zip guangdong1_round2_train2_20191004_Annotations.zip

代码运行

前提

  • 将数据集下载后放到代码根目录下的train_data文件夹中,并解压
  • 在yolov5 release下下载预训练好的权重

运行过程

  • python convertTrainLabel.py
  • python process_data_yolo.py
  • 修改process_data_yolo.py rain.sh文件中,第二步使用了process_data_yolo.py,源码中关于数据集存放位置存在问题,只写了val的处理,没写train的处理,所以生成的process_data文件夹中, 只有val而没有train,训练时会报错。

所以不能直接用train.sh脚本,要顺序运行里面的命令,到第二步的时候,先执行一遍,如下图做修改后再执行一遍,从而把训练集和验证集都准备好。

再次运行

rm -rf ./convertor

,在运行train.py的时候遇到了问题,我首先从官方仓库中下载了yolov5x.pt权重,但是在运行过程中报错,也就说说没有C3这个属性,,两个建议一是安装完整的requirements.txt,尝试无果;二是说代码需要更新,我就重新clone了官方代码,运行OK,没有问题了,运行epoch,几分钟时间,速度就是很快,开心。

提交Docker

运行完以后就需要打包docker镜像了

  • 将yolov5代码重新放到一个文件中中,如yolo,直接使用clone的也行,但是记得删除训练的图片,要不打包镜像很大的
  • 修改dockerfile,内容如下,我为了打包的镜像小一点直接用的基础python3的镜像,这个是没有GPU的,不过只是测试了,有没有都没那么重要了
代码语言:javascript
复制
# Start FROM Nvidia PyTorch image https://ngc.nvidia.com/catalog/containers/nvidia:pytorch
FROM registry.cn-shanghai.aliyuncs.com/tcc-public/python:3

# Install linux packages
RUN apt update && apt install -y screen libgl1-mesa-glx



## 把当前文件夹里的文件构建到镜像的根目录下
ADD . /

## 指定默认工作目录为根目录(需要把run.sh和生成的结果文件都放在该文件夹下,提交后才能运行)
WORKDIR /

# Install python dependencies
RUN python -m pip install --upgrade pip
RUN pip install -i https://pypi.tuna.tsinghua.edu.cn/simple -r requirements.txt gsutil

## 镜像启动后统一执行 sh run.sh
CMD ["sh", "run.sh"]
  • 修改requirements.txt
代码语言:javascript
复制
# pip install -r requirements.txt

# base ----------------------------------------
Cython
matplotlib>=3.2.2
numpy>=1.18.5
opencv-python>=4.1.2
Pillow
PyYAML>=5.3.1
scipy>=1.4.1
tensorboard>=2.2
torch>=1.7.0
torchvision>=0.8.1
tqdm>=4.41.0

# logging -------------------------------------
# wandb

# plotting ------------------------------------
seaborn>=0.11.0
pandas

# export --------------------------------------
# coremltools>=4.1
# onnx>=1.8.1
# scikit-learn==0.19.2  # for coreml quantization

# extras --------------------------------------
thop  # FLOPS computation
pycocotools>=2.0  # COCO mAP
  • 创建run.sh
代码语言:javascript
复制
python getImage.py
python detect.py
  • 创建getImage.py,因为天池的测试数据集都在tcdata下,而且一张图片一个文件夹,为了方便就将待检测都放到defect文件夹下
代码语言:javascript
复制
import os
import shutil as sh
defect_imgs = '/defect'
os.makedirs(defect_imgs)
path = '/tcdata/guangdong1_round2_testB_20191024'
folders = os.listdir(path)
for folder in folders:
    locations = os.path.join(path,folder,folder+'.jpg')
    if os.path.exists(locations):
        sh.copy(locations,defect_imgs)
  • 修改detect.py,参照baseline的代码修改yolov5的detect代码,主要是为了保存需要提交的result.json,该文件需要注意的就是一个地方:参数weights需要将你生成的权重地址修改好
代码语言:javascript
复制
import argparse
import time
from pathlib import Path

import cv2
import torch
import torch.backends.cudnn as cudnn
from numpy import random
import os
import json
from models.experimental import attempt_load
from utils.datasets import LoadStreams, LoadImages
from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \
    scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path
from utils.plots import plot_one_box
from utils.torch_utils import select_device, load_classifier, time_synchronized


def detect(save_img=False):
    source, weights, view_img, save_txt, imgsz = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
    webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
        ('rtsp://', 'rtmp://', 'http://'))

    # Directories
    save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))  # increment run
    (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir

    # Initialize
    set_logging()
    device = select_device(opt.device)
    half = device.type != 'cpu'  # half precision only supported on CUDA

    # Load model
    model = attempt_load(weights, map_location=device)  # load FP32 model
    stride = int(model.stride.max())  # model stride
    imgsz = check_img_size(imgsz, s=stride)  # check img_size
    if half:
        model.half()  # to FP16

    # Second-stage classifier
    classify = False
    if classify:
        modelc = load_classifier(name='resnet101', n=2)  # initialize
        modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()

    # Set Dataloader
    vid_path, vid_writer = None, None
    if webcam:
        view_img = check_imshow()
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz, stride=stride)
    else:
        save_img = True
        dataset = LoadImages(source, img_size=imgsz, stride=stride)

    # Get names and colors
    names = model.module.names if hasattr(model, 'module') else model.names
    colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]

    # Run inference
    if device.type != 'cpu':
        model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters())))  # run once
    t0 = time.time()
    
    save_json = True
    result = []
    
    for path, img, im0s, vid_cap in dataset:
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)

        # Inference
        t1 = time_synchronized()
        pred = model(img, augment=opt.augment)[0]

        # Apply NMS
        pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
        t2 = time_synchronized()

        # Apply Classifier
        if classify:
            pred = apply_classifier(pred, modelc, img, im0s)

        # Process detections
        for i, det in enumerate(pred):  # detections per image
            if webcam:  # batch_size >= 1
                p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count
            else:
                p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)

            p = Path(p)  # to Path
            save_path = str(save_dir / p.name)  # img.jpg
            txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}')  # img.txt
            s += '%gx%g ' % img.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwh
            if len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string

                # Write results
                for *xyxy, conf, cls in reversed(det):
                    if save_txt:  # Write to file
                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
                        line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh)  # label format
                        with open(txt_path + '.txt', 'a') as f:
                            f.write(('%g ' * len(line)).rstrip() % line + '\n')
                            
                    # write jiang #################
                    if save_json:
                        name = os.path.split(txt_path)[-1]
#                         print(name)

                        x1, y1, x2, y2 = float(xyxy[0]), float(xyxy[1]), float(xyxy[2]), float(xyxy[3])
                        bbox = [x1, y1, x2, y2]
                        img_name = name
                        conf = float(conf)

                        #add solution remove other
                        result.append(
                            {'name': img_name+'.jpg', 'category': int(cls+1), 'bbox': bbox,
                             'score': conf})
                        print("result: ", {'name': img_name+'.jpg', 'category': int(cls+1), 'bbox': bbox,'score': conf})


                    if save_img or view_img:  # Add bbox to image
                        label = f'{names[int(cls)]} {conf:.2f}'
                        plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=3)

            # Print time (inference + NMS)
            print(f'{s}Done. ({t2 - t1:.3f}s)')

            # Stream results
            if view_img:
                cv2.imshow(str(p), im0)
                cv2.waitKey(1)  # 1 millisecond

            # Save results (image with detections)
            if save_img:
                if dataset.mode == 'image':
                    cv2.imwrite(save_path, im0)
                else:  # 'video'
                    if vid_path != save_path:  # new video
                        vid_path = save_path
                        if isinstance(vid_writer, cv2.VideoWriter):
                            vid_writer.release()  # release previous video writer

                        fourcc = 'mp4v'  # output video codec
                        fps = vid_cap.get(cv2.CAP_PROP_FPS)
                        w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                        h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (w, h))
                    vid_writer.write(im0)

    if save_txt or save_img:
        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
        print(f"Results saved to {save_dir}{s}")
    
    if save_json:
        with open(os.path.join("/result.json"), 'w') as fp:
            json.dump(result, fp, indent=4, ensure_ascii=False)

    print(f'Done. ({time.time() - t0:.3f}s)')


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--weights', nargs='+', type=str, default='./runs/train/exp3/weights/best.pt', help='model.pt path(s)')
    parser.add_argument('--source', type=str, default='/defect', help='source')  # file/folder, 0 for webcam
    parser.add_argument('--save_dir', type=str, default='/', help='result save dir')
    parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
    parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
    parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
    parser.add_argument('--view-img', action='store_true', help='display results')
    parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
    parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
    parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
    parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
    parser.add_argument('--augment', action='store_true', help='augmented inference')
    parser.add_argument('--update', action='store_true', help='update all models')
    parser.add_argument('--project', default='runs/detect', help='save results to project/name')
    parser.add_argument('--name', default='exp', help='save results to project/name')
    parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
    opt = parser.parse_args()
    print(opt)
    check_requirements()

    with torch.no_grad():
        if opt.update:  # update all models (to fix SourceChangeWarning)
            for opt.weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']:
                detect()
                strip_optimizer(opt.weights)
        else:
            detect()
  • build镜像 docker build -t registry.cn-shenzhen.aliyuncs.com/your namespace:cv1.2 .
  • push镜像 docker push registry.cn-shenzhen.aliyuncs.com/your namespace:cv1.2
  • 最终结果
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 赛题背景
  • 赛题数据
  • 代码运行
    • 前提
      • 运行过程
        • 提交Docker
        相关产品与服务
        图像识别
        腾讯云图像识别基于深度学习等人工智能技术,提供车辆,物体及场景等检测和识别服务, 已上线产品子功能包含车辆识别,商品识别,宠物识别,文件封识别等,更多功能接口敬请期待。
        领券
        问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档