Loading [MathJax]/jax/output/CommonHTML/config.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >用 Python 画如此漂亮的专业插图 ?简直 So easy!

用 Python 画如此漂亮的专业插图 ?简直 So easy!

作者头像
abs_zero
发布于 2021-10-11 01:57:44
发布于 2021-10-11 01:57:44
96100
代码可运行
举报
文章被收录于专栏:AI派AI派
运行总次数:0
代码可运行

本文整理自知乎问答,仅用于学术分享,著作权归作者所有。如有侵权,请联系后台作删文处理。

编译 | 极市平台

方法一

作者|冯昱尧

https://www.zhihu.com/question/21664179/answer/18928725

强烈推荐 Python 的绘图模块 matplotlib: python plotting 。画出来的图真的是高端大气上档次,低调奢华有内涵~ 适用于从 2D 到 3D,从标量到矢量的各种绘图。能够保存成从 eps, pdf 到 svg, png, jpg 的多种格式。并且 Matplotlib 的绘图函数基本上都与 Matlab 的绘图函数名字都差不多,迁移的学习成本比较低。开源免费。如图所示(题目描述中的图在最后):(以下图片均引用自 Thumbnail gallery )

像这种普通的函数图象:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
plt.fill(x, y1, 'b', x, y2, 'r', alpha=0.3)

以及这种 Scatter 图(中文不知道该怎么说…):

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
plt.scatter(x, y, s=area, alpha=0.5)

精致的曲线,半透明的配色。显出你那高贵冷艳的X格,最重要的是只需一行代码就能搞定。从此再也不用忍受 Matlab以及GNUPlot 中那蛋疼的配色了。

想画 3D 数据?没有问题 (用mayavi可能更方便):

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
ax.plot_surface(X, Y, Z, rstride=8, cstride=8, alpha=0.3)
cset = ax.contourf(X, Y, Z, zdir='z', offset=-100, cmap=cm.coolwarm)
cset = ax.contourf(X, Y, Z, zdir='x', offset=-40, cmap=cm.coolwarm)
cset = ax.contourf(X, Y, Z, zdir='y', offset=40, cmap=cm.coolwarm)

四行代码你就能拥有(后三行是画坐标平面上的等高线,严格的额说还是一行)。

除此以外,不过你是矢量场,网络还是什么奇葩的需求都能够搞定:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
plt.streamplot(X, Y, U, V, color=U, linewidth=2, cmap=plt.cm.autumn)
plt.colorbar()
代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
plt.triplot(x, y, triangles, 'go-')
plt.title('triplot of user-specified triangulation')
plt.xlabel('Longitude (degrees)')
plt.ylabel('Latitude (degrees)')
代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
ax = plt.subplot(111, polar=True)
bars = ax.bar(theta, radii, width=width, bottom=0.0)

这还没完,Matplotlib 还支持Latex公式的插入,当别人画的图还是这个样子的时候(以下图片引用自Matplotlib Tutorial(译))

你能够把它变成这个样子:

如果再搭配上 IPython 作为运行终端(这张图是自己绘制的~):

简直就是神器啊,有木有!

心动不如行动,还等什么?

经@许铖同学提醒,再补充一句,matplotlib 还可以话 xkcd 风格的图呦~

(图片引用自网络)

此外结合 IPython Notebook 后更多精彩内容,请看http://nbviewer.ipython.org/

如果嫌安装麻烦并且恰好在 Windows 系统下的话可以尝试Python的一个发行版winpython - Portable Scientific Python 2/3 32/64bit Distribution for Windows。

鉴于@van li同学质疑 matplotlib 是否能画出题目中所示的图像,我在这里将题目中的图像用 matplotlib 画出来如下:

代码在此处:

https://gist.github.com/coldfog/c479124328fc6bb8b789

代码在此处:

https://gist.github.com/coldfog/5da63a6958fc0a949b52

看到楼下有人说配色和好看,唉....那我也贴几个吧...只不过当初限于篇幅没有写而已。

首先,python有一个专门的配色包jiffyclub/brewer2mpl,提供了从美术角度来讲的精美配色(戳这里感受ColorBrewer: Color Advice for Maps)。

此外还有一些致力于美化绘图的库,用起来也都非常方便,比如olgabot/prettyplotlib 。

废话不多说,上图就是王道。(下面图片来源网络)

有人可能会说需要复杂的设置,其实也不用。比如上边这幅图,只需要多加一个参数就好:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
cmap=brewer2mpl.get_map('RdBu', 'diverging', 8, reverse=True).mpl_colormap,

楼下说到统计绘图。嘛seaborn 是一个调用 matplotlib 的统计绘图库,上图:

(https://github.com/mwaskom/seaborn)

代码一行,后边的几乎都是一行,没做其他设置,默认就这样。我就不贴其他的代码了:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
g = sns.jointplot(x1, x2, kind="kde", size=7, space=0)

还有个更炫酷的可交互式绘图,大家自己戳开看吧:

http://nbviewer.ipython.org/github/plotly/python-user-guidechaocc/blob/master/s0_getting-started/s0_getting-started.ipynb

哼哼,完爆了吧~~~~\(≧▽≦)/~

---

遇到安装问题的请尝试Anaconda这个Python发行版。下载安装后直接使用即可,它几乎预装了所有要用到的科学计算及可视化的库。

有盆友在评论里说希望能有完整的教程,确实就这个答案来说,离实际使用还有很大的距离,网上相关的中文资料也不多。不过真要写起来这个答案也装不下,况且写在这个问题下也不是很恰当。等到那天我有专栏了再说吧,到时候也许会写一个关于可视化的系列教程。

方法二

作者|阿昆

https://www.zhihu.com/question/21664179/answer/1182984311

翻遍这个问题下的所有回答,发现凡是提到Matlab的,其评价中常有‘锯齿’,‘菜鸟’,‘难看’,‘不忍直视’等标签。

然而,2020年了,技术提升了,观念进步了,当一些基本问题解决后,Matlab还那么‘不堪’吗?

观察Mathematica、Origin、Python/matplotlib、R/ggplot2等软件绘制的数据、结果图,其与Matlab图的差异主要体现在点、线、面等对象属性(位置、尺寸、颜色等)的不同上

既然只是属性的不同,那是不是只要修改一下这些信息,就可以实现各种软件绘图风格之间的转换了呢?

答案是肯定的。

比如,这是高赞回答 @冯昱尧用Python/matplotlib绘制的一幅图:

我们用Matlab默认属性来绘制,效果是这样的(没加误差棒):

然后,只需再修改一下位置、尺寸、颜色等信息,就可以得到风格差不多的图(没加误差棒):

当我们用这一思想来思考该如何绘制插图时,就很容易实现自己的小想法,仿造甚至创造出理想的插图。

比如,某一天,发现傍晚的天空颜色很美,心想:为什么不能把它画到论文插图里呢?(见:Matlab论文插图配色2——自然渐变)

于是,

再比如,某一天,看到女朋友的照片,觉得很美,心想:为什么不能把她画到论文插图里呢?(见:Matlab论文插图配色1——是女朋友的颜色)

于是,

这时,有朋友就要说了:“哎呀答主,你整这些个花里花哨的东西,还不是得一行代码一行代码的敲出来啊,太麻烦了吧。”

此言差矣。

就像R有ggplot2,Python有matplotlib,Matlab其实也有很多现成的绘图工具包,并不需要你自己开发。

比如,

Pierre Morel [1] 结合ggplot2,开发了gramm工具,用于绘制复杂图形。

Inspired by ggplot2 (Wickham 2009), the R implementation of “grammar of graphics” principles (Wilkinson 1999), gramm improves Matlab’s plotting functionality, allowing to generate complex figures using high-level object-oriented code.

示例效果如下:

类似的,Stephen Cobeldick [2] 将matplotlib配色方案移植到了Matlab。

也就是说,在Matlab中就可以直接用matplotlib的配色方案了,就不必总是‘jet’了。

The MatPlotLib 2.0 default colormaps ported to MATLAB. This submission also includes the Line ColorOrder colormaps!

示例效果如下:

还有很多专门针对论文插图的工具包,这里就不一一介绍了。

总的来说,工具只是工具,它们并没有高低贵贱之分。

若想画出好看的插图,关键还是在于使用工具的人

集中一点,登峰造极。

参考: Morel P . Gramm: grammar of graphics plotting in Matlab. Cobeldick S . MatPlotLib Perceptually Uniform Colormaps.

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2021-09-24,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 AI派 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
如何在科研论文中画出漂亮的插图?
https://www.zhihu.com/question/21664179/answer/18928725
Datawhale
2020/07/17
1.2K0
如何在科研论文中画出漂亮的插图?
100+SCI科研绘图系列教程(R和python)
生信学习者
2024/10/22
4070
100+SCI科研绘图系列教程(R和python)
气象绘图——复杂的三维图
在普通的matplotlib的三维投影中,我们似乎并不能获得我们想要的结果,尤其是视觉上的,虽然倾斜了图形,但是文字等标注仍然是二维的,例如下面这张图片:
自学气象人
2023/06/21
1.2K0
气象绘图——复杂的三维图
使用Matplotlib对数据进行高级可视化(基本图,3D图和小部件)
可视化在当今世界许多领域的结果传播中发挥着重要作用。如果没有适当的可视化,很难揭示结果,理解变量之间的复杂关系并描述数据的趋势。
代码医生工作室
2019/06/21
3.9K0
使用Matplotlib对数据进行高级可视化(基本图,3D图和小部件)
概率论11 协方差与相关系数
前面介绍的分布描述量,比如期望和方差,都是基于单一随机变量的。现在考虑多个随机变量的情况。我们使用联合分布来表示定义在同一个样本空间的多个随机变量的概率分布。 联合分布中包含了相当丰富的信息。比如从联合分布中抽取某个随机变量的边缘分布,即获得该随机变量的分布,并可以据此,获得该随机变量的期望和方差。这样做是将视线限制在单一的一个随机变量上,我们损失了联合分布中包含的其他有用信息,比如不同随机变量之间的互动关系。为了了解不同随机变量之间的关系,需要求助其它的一些描述量。 协方差 协方差(covariance)
Vamei
2018/01/18
7020
概率论11 协方差与相关系数
Python中的3D绘图命令~放到论文或PPT里太加分了
比如在下面的几张动图中,使用matplotlib中的三维显示命令,使得我们可以对于logistic回归网络的性能与相关参数有了更好的理解。
润森
2022/09/22
8450
Python中的3D绘图命令~放到论文或PPT里太加分了
【python图像处理】python绘制
3D图形在数据分析、数据建模、图形和图像处理等领域中都有着广泛的应用,下面将给大家介绍一下如何使用python进行3D图形的绘制,包括3D散点、3D表面、3D轮廓、3D直线(曲线)以及3D文字等的绘制。
py3study
2020/01/10
1.6K0
【python图像处理】python绘制
深入理解 Matplotlib3D 绘图函数 plot_surface
今晚开始接触 Matplotlib 的 3D 绘图函数 plot_surface,真的非常强大,图片质量可以达到出版级别,而且 3D 图像可以旋转 ,可以从不同角度来看某个 3D 立体图,但是我发现各大中文开源社区有关 3D 绘图的代码都是千篇一律的,现除了看源码说明,我几乎得不到半点有关 plot_surface 的重要参数说明,而且我感觉纯英文的源码说明晦涩难懂,而且没有任何配图,初学者看得是云里雾里,经过一晚上的调试,我才完全弄明白所有参数的含义,以及如何改变这些参数控制图形的显示,现将一点心得分享出来
月小水长
2019/07/30
12.2K1
深入理解 Matplotlib3D 绘图函数 plot_surface
Python可视化 | 三维地图可视化实例
这是我在比较久远之前看到的问题。首先必须明确一点,matplotlib的axes3D这个投影中 ,是不能用add_geometry这个功能来直接将读取到的shp文件添加上去的。add_geometry这个功能是cartopy下的geoaxes才能使用,同理add_feature也不能再3d图中使用。
郭好奇同学
2021/05/08
4.4K1
Python可视化 | 三维地图可视化实例
Matplotlib三维绘图,这一篇就够了
这篇博客将介绍使用 mplot3d 工具包进行三维绘图,支持简单的 3D 图形,包括曲面、线框、散点图和条形图。
玖柒的小窝
2021/10/25
1.3K0
Matplotlib三维绘图,这一篇就够了
概率论11 协方差与相关系数
作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明。谢谢!
Vamei
2018/09/25
1.4K0
概率论11 协方差与相关系数
Python气象绘图教程—(十九)剖面图
提要中提到的这几种图形都是在气象上比较常用的,地形剖面主要研究地貌对降雨、气流的影响作用;纬度高度剖面图可以用来分析降雨的某些条件,如湿层深厚、上干下湿、风向风速等;时间纬度图研究某个固定经度上的值随时间的演变(这是和大气环流一般自西向东相匹配的,所以时间经度图比较少见)。
bugsuse
2020/10/09
15.3K1
Python气象绘图教程—(十九)剖面图
30行Python代码实现3D数据可视化
之前我们基本都是用它来绘制二维的数据图表。而今天文章中,我们将教大家如何用不到 30 行代码绘制 Matplotlib 3D 图形。
Crossin先生
2020/10/10
4K0
30行Python代码实现3D数据可视化
Matplotlib使用笔记
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
村雨遥
2019/09/09
5710
基于matplotlib的3维ERA5多层温度分布图
实际上是上学期听学术报告看到类似的天气形势3D图,搜了挺多教程,效果差强人意吧 希望对你们有微小的帮助
用户11172986
2024/06/20
1720
基于matplotlib的3维ERA5多层温度分布图
matplotlib绘制三维曲面图时遇到的问题及解决方法
在使用 Matplotlib 绘制三维曲面图时,可能会遇到一些常见的问题。今天我将全程详细讲解下遇到问题并且找到应对方法的全部过程,希望能帮助大家。
华科云商小徐
2024/06/07
1920
matlibplot绘制各种图形
0.导语1.预备知识1.1 np.arange()1.2 numpy.random.uniform()1.3 zip()2.bar绘制3.散点图4.3D图5.参考文章6.作者的话
公众号guangcity
2019/09/20
1.7K0
matlibplot绘制各种图形
python实现之多元函数作图
多元函数的本质是一种关系,是两个集合间一种确定的对应关系。多元函数是后续人工智能的基础,先可视化呈现,后续再学习一下求导。
python与大数据分析
2022/03/11
1.1K0
python实现之多元函数作图
气象绘图——3D图形迁移
在前面推送中我们提到了通过collection功能而在3D地图中添加地图的方法,也短暂提到了栅格与填色两种图形样式的降维方法。但是从matplotlib这两个函数的底层有一定的局限性,比如下面这两张图的侧面填色就无法绘出:
自学气象人
2023/06/21
4190
气象绘图——3D图形迁移
python可视化 | contour、contourf、cartopy补充
三个问题都是一些历史遗留问题,专门留待这一节来解决。包括画指定的等值线(如588)、如何在一个子图里绘制多个contourf、cartopy的刊误。
郭好奇同学
2021/03/25
5.7K0
python可视化 | contour、contourf、cartopy补充
相关推荐
如何在科研论文中画出漂亮的插图?
更多 >
领券
💥开发者 MCP广场重磅上线!
精选全网热门MCP server,让你的AI更好用 🚀
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档
本文部分代码块支持一键运行,欢迎体验
本文部分代码块支持一键运行,欢迎体验