前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >排列组合公式的原理_有序排列组合公式

排列组合公式的原理_有序排列组合公式

作者头像
全栈程序员站长
发布于 2022-11-01 08:32:11
发布于 2022-11-01 08:32:11
2.1K0
举报

绪论:加法原理、乘法原理# 分类计数原理:做一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法,…,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+…+mn种不同的方法。

分步计数原理:完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,…,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×⋯×mn种不同的方法。

区别:分类计数原理是加法原理,不同的类加起来就是我要得到的总数;分步计数原理是乘法原理,是同一事件分成若干步骤,每个步骤的方法数相乘才是总数。

排列问题

排列数# 从n个不同元素种取出m(m≤n)个元素的所有不同排列的个数,叫做从n个不同元素种取出m个元素的排列数,用符号Amn表示。

排列数公式# Amn=n(n−1)(n−2)⋯(n−m+1)=n!(n−m)!,n,m∈N∗,并且m≤n (规定0!=1)

推导:把n个不同的元素任选m个排序,按计数原理分步进行:

取第一个:有n种取法; 取第二个:有(n−1)种取法; 取第三个:有(n−2)种取法; …… 取第m个:有(n−m+1)种取法;

根据分步乘法原理,得出上述公式。

排列数性质# Amn=nAm−1n−1 可理解为“某特定位置”先安排,再安排其余位置。

Amn=mAm−1n−1+Amn−1 可理解为:含特定元素的排列有mAm−1n−1,不含特定元素的排列为Amn−1。

组合问题

组合数# 从n个不同元素种取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素种取出m个元素的组合数,用符号Cmn表示。

组合数公式# Cmn=AmnAmm=n(n−1)(n−2)⋯(n−m+1)m!=n!m!(n−m)!,n,m∈N∗,并且m≤n C0n=Cnn=1 证明:利用排列和组合之间的关系以及排列的公式来推导证明。

将部分排列问题Amn分解为两个步骤:

第一步,就是从n个球中抽m个出来,先不排序,此即组合数问题Cmn;

第二步,则是把这m个被抽出来的球排序,即全排列Amm。

根据乘法原理,Amn=CmnAmm,那么

Cmn=AmnAmm=n(n−1)(n−2)⋯(n−m+1)m!=n!m!(n−m)! 组合数的性质# Cmn=Cn−mn 可以理解为:将原本的每个组合都反转,把原来没选的选上,原来选了的去掉,这样就变成从n个元素种取出n−m个元素,显然方案数是相等的。

递推公式Cmn=Cmn−1+Cm−1n−1 可理解为:含特定元素的组合有Cm−1n−1,不含特定元素的排列为Cmn−1。还不懂?看下面。

Example

从1,2,3,4,5(n=5)中取出2(m=2)个元素的组合(Cmn):

12 13 14 15 23 24 25 34 35 45

显然,这些组合中要么含有元素“1”,要么不含。

其中含有“1”的是:12 13 14 15

把里面的“1”都挖掉:2 3 4 5

而上面这个等价于从2,3,4,5(n−1)中取出1(m−1)个元素的组合。

其中不含“1”的是:23 24 25 34 35 45 上面等价于从2,3,4,5(n−1)中取出2(m)个元素的组合。

而总方案数等于上面两种情况方案数之和,即Cmn=Cmn−1+Cm−1n−1。

组合数求和公式# C0n+C1n+C2n+⋯+Cnn=2n 我们感性认知一下,上面这个式子的左边表示什么呢?

把从n个球中抽出0个球的组合数(值为1)、抽出1个球的组合数、抽出2个球的组合数、……、抽出n个球的组合数相加。

换句话说,就是从n个球中随便抽出一些不定个数球,问一共有多少种组合。

对于第1个球,可以选,也可以不选,有2种情况。 对于第2个球,可以选,也可以不选,有2种情况。 对于任意一个球,可以选,也可以不选,有2种情况。

根据乘法原理,一共2×2×⋯×2⏟n个2相乘=2n种组合。

想要严谨的证明?数学归纳法:

当m=1时,C01+C11=2=21成立。

假设n=k(k∈N∗)时等式成立,即

k∑i=0Cik=2n 成立,当n=k+1时,

C0k+1+C1k+1+C2k+1+⋯+Ckk+1+Ck+1k+1=C0k+1+(C0k+C1k)+(C1k+C2k)+⋯+(Ck−1k+Ckk)+Ck+1k+1=(C0k+C1k+C2k+⋯+Ckk)+(C0k+C1k+C2k+⋯+Ckk)=2×2k=2k+1 等式也成立。

由1、2得,等式对n∈N∗都成立。

也可偷懒地用二项式定理证明(其实二项式定理也是用数学归纳法证明的):

(a+b)n=n∑k=0Cknan−kbk 令a=b=1,就得到了

n∑i=0Cin=2n 类似的公式(由Cmn=Cn−mn推导):

C0n+C2n+C4n+⋯=C1n+C3n+C5n+⋯=2n−1

杨辉三角

这个神奇的图形和组合数、二项式定理密切相关。

杨辉三角可以帮助你更好地理解和记忆组合数的性质:

第n行的m个数可表示为 Cm−1n−1,即为从n−1个不同元素中取m−1个元素的组合数。

第n行的数字有n项。

每行数字左右对称(第n行的第m个数和第n−m+1个数相等,Cmn=Cn−mn),由1开始逐渐变大。

每个数等于它上方两数之和(第n+1行的第i个数等于第n行的第i−1个数和第i个数之和,即Cin+1=Cin+Ci−1n)。

(a+b)n的展开式中的各项系数依次对应杨辉三角的第n+1行中的每一项(二项式定理)。

以下来自维基百科

二项式系数

二项式系数可排列成帕斯卡三角形。 在数学上,二项式系数是二项式定理中各项的系数。一般而言,二项式系数由两个非负整数n和k为参数决定,写作,定义为的多项式展开式中,项的系数,因此一定是非负整数。如果将二项式系数写成一行,再依照顺序由上往下排列,则构成帕斯卡三角形。 (nk)(1+x)nxk(n0),(n1),…,(nn)n=0,1,2,…

二项式系数常见于各数学领域中,尤其是组合数学。事实上,可以被理解为从n个相异元素中取出k个元素的方法数,所以大多读作「n取k」。二项式系数的定义可以推广至n是复数的情况,而且仍然被称为二项式系数。

二项式系数亦有不同的符号表达方式,包括:C(n,k)、nCk、nCk、、[注3],其中的C代表组合(combinations)或选择(choices)。很多计算机使用含有C的变种记号,使得算式只占一行的空间,相同理由也发生在置换数,例如写作P(n,k)。 CknCnkPnk

定义及概念 对于非负整数n和k,二项式系数定义为的多项式展开式中,项的系数,即 (nk)(1+x)nxk

(1+x)n=n∑k=0(nk)xk=(n0)+(n1)x+⋯+(nn)xn 事实上,若x、y为交换环上的元素,则

(x+y)n=∑nk=0(nk)xnkyk

此数的另一出处在组合数学,表达了从n物中,不计较次序取k物有多少方式,亦即从一n元素集合中所能组成k元素子集的数量。

计算二项式系数

除展开二项式或点算组合数量之外,尚有多种方式计算的值。 (nk)

递归公式 以下递归公式可计算二项式系数:

(nk)=(n−1k−1)+(n−1k)∀n,k∈N

其中特别指定:

(n0)=1∀n∈N∪{0},(0k)=0∀k∈N.

此公式可由计算(1 + X ) n −1 (1 + X )中的X k项,或点算集合{1, 2, …, n }的k个元素组合中包含n与不包含n的数量得出。

显然,如果k > n,则。而且对所有n,,故此上述递归公式可于此等情况下中断。递归公式可用作建构帕斯卡三角形。 \tbinom nk=0\tbinom nn=1

帕斯卡三角形(杨辉三角)

有关二项式系数的恒等式

关系式

阶乘公式能联系相邻的二项式系数,例如在k是正整数时,对任意n有:

(n+1k)=(nk)+(nk−1) (nk)=nk(n−1k−1) (n−1k)−(n−1k−1)=n−2kn(nk) 两个组合数相乘可作变换:

(ni)(im)=(nm)(nmim) n∑r=0(nr)=2n k∑r=0(n+r−1r)=(n+kk) nk∑r=0(−1)r(n+1)k+r+1(nkr)=(nk)−1 n∑r=0(dndr)=1dd∑r=1(1+e2πrid)dn n∑i=m(a+ii)=(a+n+1n)−(a+mm−1) (a+mm−1)+(a+mm)+(a+m+1m+1)+…+(a+nn)=(a+n+1n) Fn=∞∑i=0(nii) Fn−1+Fn=∞∑i=0(n−1−ii)+∞∑i=0(nii)=1+∞∑i=1(nii−1)+∞∑i=1(nii)=1+∞∑i=1(n+1−ii)=∞∑i=0(n+1−ii)=Fn+1 主条目:朱世杰恒等式

n∑i=m(ia)=(n+1a+1)−(ma+1)(ma+1)+(ma)+(m+1a)…+(na)=(n+1a+1) 二阶求和公式

n∑r=0(nr)2=(2nn) n∑i=0(r1+n−1−ir1−1)(r2+i−1r2−1)=(r1+r2+n−1r1+r2−1) (1−x)−r1(1−x)−r2=(1−x)−r1−r2 (1−x)−r1(1−x)−r2=(∞∑n=0(r1+n−1r1−1)xn)(∞∑n=0(r2+n−1r2−1)xn)=∞∑n=0(n∑i=0(r1+n−1−ir1−1)(r2+i−1r2−1))xn (1−x)−r1−r2=∞∑n=0(r1+r2+n−1r1+r2−1)xn 主条目:范德蒙恒等式

k∑i=0(ni)(mki)=(n+mk) 三阶求和公式 主条目:李善兰恒等式

(n+kk)2=k∑j=0(kj)2(n+2k−j2k)

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/179566.html原文链接:https://javaforall.cn

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2022年10月21日,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
排列组合的一些公式及推导(非常详细易懂)[通俗易懂]
分类计数原理:做一件事,有\(n\)类办法,在第\(1\)类办法中有\(m_1\)种不同的方法,在第\(2\)类办法中有\(m_2\)种不同的方法,…,在第\(n\)类办法中有\(m_n\)种不同的方法,那么完成这件事共有\(N=m_1+m_2+…+m_n\)种不同的方法。
全栈程序员站长
2022/09/20
3.9K0
组合数公式
\[\binom{n}{k}+\binom{n}{k-1}=\binom{n+1}{k} \]
全栈程序员站长
2022/09/08
4240
【组合数学】计数模型、常见组合数与组合恒等式 ★★
除端点外 , 不接触对角线的非降路径数 参考 : 【组合数学】非降路径问题 ( 限制条件的非降路径数 )
韩曙亮
2023/03/28
7310
组合数的各种性质和定理
从m个物品里选出n个的方案数,记作 Cnm C m n C_m^n,即为组合数 组合数有很多很多的性质和定理。。。 注意由于本人沉迷玩梗无法自拔,如果看见您看不懂的梗请随意跳过。
全栈程序员站长
2022/09/13
9550
【组合数学】组合恒等式总结 ( 十一个组合恒等式 | 组合恒等式证明方法 | 求和方法 ) ★
② 归纳步骤 : 根据 数学归纳法的种类 , 进行不同方式的证明 , 这里有 第一数学归纳法 和 第二数学归纳法 两种归纳法 ;
韩曙亮
2023/03/28
2.2K0
【组合数学】二项式定理与组合恒等式 ( 二项式定理 | 三个组合恒等式 递推式 | 递推式 1 | 递推式 2 | 递推式 3 帕斯卡/杨辉三角公式 | 组合分析方法 | 递推式组合恒等式特点 )
组合分析方法使用 : 使用组合分析方法证明组合数时 , 先指定集合 , 指定元素 , 指定两个计数问题 , 公式两边是对同一个问题的计数 ;
韩曙亮
2023/03/28
8350
排列组合公式 与24点编程游戏
你有 4 张写有 1 到 9 数字的牌。你需要判断是否能通过 *,/,+,-,(,) 的运算得到 24。
一个会写诗的程序员
2022/01/27
1.1K0
排列组合公式 与24点编程游戏
常见排列组合问题的计算公式
在进行排列组合计算以及概率计算时我们经常会遇到一些具有相同性质的问题。假设问题的样本空间Ω中一共有k种类型的元素α, β,γ... κ。每种类型的元素个数分别为Nα, Nβ,Nγ... Nκ。那么这些元素组成的重复元素的集合Ω为: Ω= { Nα * α, Nβ * β, Nγ * γ, ... Nκ * κ}
欧阳大哥2013
2018/08/22
2.4K0
【组合数学】排列组合 ( 排列组合内容概要 | 选取问题 | 集合排列 | 集合组合 )
文章目录 一、排列组合内容概要 二、选取问题 三、集合排列 四、环排列 五、集合组合 参考博客 : 【组合数学】基本计数原则 ( 加法原则 | 乘法原则 ) 【组合数学】集合的排列组合问题示例 ( 排列 | 组合 | 圆排列 | 二项式定理 ) 一、排列组合内容概要 ---- 排列组合内容概要 : 选取问题 集合的排列与组合问题 基本计数公式应用 多重集的排列与组合问题 二、选取问题 ---- n 元集 S , 从 S 集合中选取 r 个元素 ; 根据 元素是否允许重复 , 选取过程是否有序
韩曙亮
2023/03/28
1.9K0
【组合数学】排列组合 ( 集合组合、一一对应模型分析示例 )
原始的简单模型 , 如 分类 ( 加法 ) , 分步 ( 乘法 ) , 集合排列 , 集合组合 , 多重集排列 , 多重集组合 , 没有对应的模型 , 无法直接使用 ;
韩曙亮
2023/03/28
1.2K0
计数与组合
加法原理:集合元素可以被划分为集合族F = {S1, S2, S3…}则S的元素个数是这些元素个数之和:|S| = |S1| + |S2| + |S3|+…|Sn|
From Zero
2021/12/07
6580
【组合数学】生成函数 ( 正整数拆分 | 重复有序拆分 | 不重复有序拆分 | 重复有序拆分方案数证明 )
这种形式可以使用 不定方程非负整数解个数 的生成函数计算 , 是 带系数 , 带限制条件的情况 , 参考 : 组合数学】生成函数 ( 使用生成函数求解不定方程解个数 )
韩曙亮
2023/03/28
2.8K0
【组合数学】排列组合 ( 多重集组合数示例 | 三个计数模型 | 选取问题 | 多重集组合问题 | 不定方程非负整数解问题 )
球是没有区别的 , 球放到盒子里 , 球没有标号 , 盒子有标号 , 每个盒子放球的个数不同 ;
韩曙亮
2023/03/28
6570
排列组合公式及排列组合算法[通俗易懂]
公式P是指排列,从N个元素取M个进行排列。 公式C是指组合,从N个元素取M个进行组合,不进行排列。 N-元素的总个数 M参与选择的元素个数 !-阶乘,如 9!=9*8*7*6*5*4*3*2*1
全栈程序员站长
2022/07/22
27.7K0
排列组合公式及排列组合算法[通俗易懂]
【组合数学】指数生成函数 ( 证明指数生成函数求解多重集排列 )
文章目录 一、证明指数生成函数求解多重集排列 参考博客 : 按照顺序看 【组合数学】生成函数 简要介绍 ( 生成函数定义 | 牛顿二项式系数 | 常用的生成函数 | 与常数相关 | 与二项式系数相关 | 与多项式系数相关 ) 【组合数学】生成函数 ( 线性性质 | 乘积性质 ) 【组合数学】生成函数 ( 移位性质 ) 【组合数学】生成函数 ( 求和性质 ) 【组合数学】生成函数 ( 换元性质 | 求导性质 | 积分性质 ) 【组合数学】生成函数 ( 性质总结 | 重要的生成函数 ) ★ 【组合数学】生成函数
韩曙亮
2023/03/28
5160
二项式系数 Binomial Coefficients
\binom nk 表示二项式系数,其中 n 称作上指标 (upper index),而称 k 为下指标 (lower index)。
yzxoi
2022/09/19
1.4K0
二项式系数 Binomial Coefficients
【组合数学】指数生成函数 ( 指数生成函数性质 | 指数生成函数求解多重集排列 )
将上述两个 指数生成函数 相乘 , 看做一个函数 , 可以展开成另外一个数列的级数形式 ,
韩曙亮
2023/03/28
6970
【组合数学】生成函数 ( 生成函数应用场景 | 使用生成函数求解递推方程 )
不定方程的解个数 , 之前只能求解 没有约束的情况 , 如果对变量有约束 , 如
韩曙亮
2023/03/28
1.4K0
【组合数学】生成函数 ( 生成函数应用场景 | 使用生成函数求解递推方程 )
【组合数学】生成函数 ( 使用生成函数求解多重集 r 组合数 )
是在重复度不受限制的情况下的选取结果 , 如果重复度受限制 , 就需要使用生成函数进行计算 ;
韩曙亮
2023/03/28
1.1K0
【组合数学】排列组合 ( 集合排列、分步处理示例 )
因此这里 元素不重复 , 有序选取 , 对应的是 集合的排列 , 使用集合排列公式 ;
韩曙亮
2023/03/28
1.2K0
推荐阅读
排列组合的一些公式及推导(非常详细易懂)[通俗易懂]
3.9K0
组合数公式
4240
【组合数学】计数模型、常见组合数与组合恒等式 ★★
7310
组合数的各种性质和定理
9550
【组合数学】组合恒等式总结 ( 十一个组合恒等式 | 组合恒等式证明方法 | 求和方法 ) ★
2.2K0
【组合数学】二项式定理与组合恒等式 ( 二项式定理 | 三个组合恒等式 递推式 | 递推式 1 | 递推式 2 | 递推式 3 帕斯卡/杨辉三角公式 | 组合分析方法 | 递推式组合恒等式特点 )
8350
排列组合公式 与24点编程游戏
1.1K0
常见排列组合问题的计算公式
2.4K0
【组合数学】排列组合 ( 排列组合内容概要 | 选取问题 | 集合排列 | 集合组合 )
1.9K0
【组合数学】排列组合 ( 集合组合、一一对应模型分析示例 )
1.2K0
计数与组合
6580
【组合数学】生成函数 ( 正整数拆分 | 重复有序拆分 | 不重复有序拆分 | 重复有序拆分方案数证明 )
2.8K0
【组合数学】排列组合 ( 多重集组合数示例 | 三个计数模型 | 选取问题 | 多重集组合问题 | 不定方程非负整数解问题 )
6570
排列组合公式及排列组合算法[通俗易懂]
27.7K0
【组合数学】指数生成函数 ( 证明指数生成函数求解多重集排列 )
5160
二项式系数 Binomial Coefficients
1.4K0
【组合数学】指数生成函数 ( 指数生成函数性质 | 指数生成函数求解多重集排列 )
6970
【组合数学】生成函数 ( 生成函数应用场景 | 使用生成函数求解递推方程 )
1.4K0
【组合数学】生成函数 ( 使用生成函数求解多重集 r 组合数 )
1.1K0
【组合数学】排列组合 ( 集合排列、分步处理示例 )
1.2K0
相关推荐
排列组合的一些公式及推导(非常详细易懂)[通俗易懂]
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档