生成式 AI 有望推动仿真场景大幅提升泛化能力,帮助主机厂提升仿真场景数据的应用比例,从而提高自动驾驶模型的迭代速度、缩短开发周期。当前仿真场景对实际路测中所遇到的边缘案例主要通过人工进行泛化,如量产车在影子模式下遇到某一个 corner case 并进行数据回传后,在虚拟引擎中进行场景重建,再通过人为添加要素,如增添雨雾环境、增加交通参与人数等方式对原始场景进行梯度泛化。但对场景的泛化能力依赖于工程师对于场景的理解,且存在经由手动添加元素后的场景与真实场景的拟合度不高的问题。生成式 AI有望在针对真实场景中的 corner case 进行场景泛化的过程中取代人工,可以迅速泛化出大量的、与真实世界高拟合度的虚拟场景,进而提高自动驾驶模型的迭代速度。