test_batches = ImageDataGenerator(
preprocessing_function=preprocess_input
).flow_from_directory(test_path,target_size=(224,224),batch_size=1,class_mode=None,shuffle = "false")
prediction = model.predict_generator(test_batches, steps=1, verbose=1)
np.argmax(prediction)
在这里,我使用step_size=1和steps=1测试了一个映像,每当我运行它时,我都会得到不同的预测,这意味着它不是每次都选择相同的图像。如何检查图像名称?
编辑:下面是解释我所面临的问题的另一个尝试:
test_batches = ImageDataGenerator(
preprocessing_function=preprocess_input
).flow_from_directory(test_path,target_size=(224,224),batch_size=2,class_mode=None,shuffle = "false")
prediction = model.predict_generator(test_batches, steps=1, verbose=2)
预测变量有两个预测概率数组。我怎么知道这些预测是为了什么图像?
发布于 2018-04-23 00:58:28
如果希望生成器始终返回相同的映像(为了可复制性):
from keras.preprocessing.image import ImageDataGenerator
import numpy as np
data_dir = 'path/to/image/directory' # path to the directory where the images are stored
index = 0 # select a number here
ig = ImageDataGenerator()
gen = ig.flow_from_directory(data_dir, batch_size=1) # if you want batch_size > 1 you need to
# add as many indices as your batch_size.
image, label = gen._get_batches_of_transformed_samples(np.array([index]))
image_name = gen.filenames[index]
# do whatever you want with your image and label
如果您希望生成器始终返回一个随机图像,但知道是哪个图像,我建议执行以下操作:
index = next(gen.index_generator)
image, label = gen._get_batches_of_transformed_samples(index)
image_name = gen.filenames[index]
predict_generator
是如何工作的,那么这些方法都不会对您有所帮助。我唯一能想到的就是编辑DirectoryIterator
代码。例如,您可以添加一行打印要传递的图像的名称。我建议在第1434行之后添加以下语句
print(fname)
发布于 2018-04-22 21:50:57
您可以使用generator.filename属性
image_name=test_batch.filenames[0]
https://stackoverflow.com/questions/49973379
复制