当 Redis 用作缓存时,其目的就是为了减少数据库访问频率,降低数据库压力,但是假如我们某些数据并不存在于 Redis 当中,那么请求还是会直接到达数据库,而一旦在同一时间大量缓存失效或者一个不存在缓存的请求被恶意攻击访问,这些都会导致数据库压力骤增,这又该如何防止呢?
缓存雪崩指的是 Redis 当中的大量缓存在同一时间全部失效,而假如恰巧这一段时间同时又有大量请求被发起,那么就会造成请求直接访问到数据库,可能会把数据库冲垮。
缓存雪崩一般形容的是缓存中没有而数据库中有的数据,而因为时间到期导致请求直达数据库。
解决方案
解决缓存雪崩的方法有很多,常用的有以下几种:
缓存击穿和缓存雪崩很类似,区别就是缓存击穿一般指的是单个缓存失效,而同一时间又有很大的并发请求需要访问这个 key,从而造成了数据库的压力。
解决方案
解决缓存击穿的方法和解决缓存雪崩的方法很类似:
缓存穿透和上面两种现象的本质区别就是这时候访问的数据不但在 Redis 中不存在,而且在数据库中也不存在,这样如果并发过大就会造成数据源源不断的到达数据库,给数据库造成极大压力。
解决方案
对于缓存穿透问题,加锁并不能起到很好地效果,因为本身 key 就是不存在,所以即使控制了线程的访问数,但是请求还是会源源不断的到达数据库。
解决缓存穿透问题一般可以采用以下方案配合使用:
针对上面缓存穿透的解决方案,我们思考一下:假如一个 key 可以绕过第 1 种方法的校验,而此时有大量的不存在 key 被访问(如 1 亿个或者 10 亿个),那么这时候全部存储到内存中,是不太现实的。
那么有没有一种更好的解决方案呢?这就是我们接下来要介绍的布隆过滤器,布隆过滤器就可以用尽可能小的空间存储尽可能多的数据。
什么是布隆过滤器?
布隆过滤器(Bloom Filter)是由布隆在 1970 年提出的。它实际上是一个很长的二进制向量(位图)和一系列随机映射函数(哈希函数)。
布隆过滤器可以用于检索一个元素是否在一个集合中。它的优点是空间效率和查询时间都比一般的算法要好的多,缺点是有一定的误识别率而且删除困难。
位图(Bitmap)
Redis 当中有一种数据结构就是位图,布隆过滤器其中重要的实现就是位图的实现,也就是位数组,并且在这个数组中每一个位置只有 0 和 1 两种状态,每个位置只占用 1 个字节,其中 0 表示没有元素存在,1 表示有元素存在。如下图所示就是一个简单的布隆过滤器示例(一个 key 值经过哈希运算和位运算就可以得出应该落在哪个位置):
image.png
哈希碰撞
上面我们发现,lonely和wolf落在了同一个位置,这种不同的key值经过哈希运算后得到相同值的现象就称之为哈希碰撞。发生哈希碰撞之后再经过位运算,那么最后肯定会落在同一个位置。
如果发生过多的哈希碰撞,就会影响到判断的准确性,所以为了减少哈希碰撞,我们一般会综合考虑以下 2 个因素:
上面两个方法我们需要综合考虑:比如增大位数组,那么就需要消耗更多的空间,而经过越多的哈希计算也会消耗 cpu 影响到最终的计算时间,所以位数组到底多大,哈希函数次数又到底需要计算多少次合适需要具体情况具体分析。
布隆过滤器的 2 大特点
下图这个就是一个经过了 2 次哈希函数得到的布隆过滤器,根据下图我们很容易看到,假如我们的 Redis 根本不存在,但是 Redis 经过 2 次哈希函数之后得到的两个位置已经是 1 了(一个是 wolf 通过 f2 得到,一个是 Nosql 通过 f1 得到,这就是发生了哈希碰撞,也是布隆过滤器可能存在误判的原因)。
如何从10亿数据中快速判断是否存在某一个元素?今天总算知道了
所以通过上面的现象,我们从布隆过滤器的角度可以得出布隆过滤器主要有 2 大特点:
而从元素的角度也可以得出 2 大特点:
PS:需要注意的是,如果经过 N 次哈希函数,则需要得到的 N 个位置都是 1 才能判定存在,只要有一个是 0,就可以判定为元素不存在布隆过滤器中。
fpp
因为布隆过滤器中总是会存在误判率,因为哈希碰撞是不可能百分百避免的。布隆过滤器对这种误判率称之为假阳性概率,即:False Positive Probability,简称为 fpp。
在实践中使用布隆过滤器时可以自己定义一个 fpp,然后就可以根据布隆过滤器的理论计算出需要多少个哈希函数和多大的位数组空间。需要注意的是这个 fpp 不能定义为 100%,因为无法百分保证不发生哈希碰撞。
布隆过滤器的实现(Guava)
在 Guava 的包中提供了布隆过滤器的实现,下面就通过 Guava 来体会一下布隆过滤器的应用:
<dependency>
<groupId>com.google.guava</groupId>
<artifactId>guava</artifactId>
<version>29.0-jre</version>
</dependency>
package com.lonely.wolf.note.redis;
import com.google.common.base.Charsets;
import com.google.common.hash.BloomFilter;
import com.google.common.hash.Funnels;
import java.text.NumberFormat;
import java.util.ArrayList;
import java.util.List;
import java.util.UUID;
public class GuavaBloomFilter {
private static final int expectedInsertions = 1000000;
public static void main(String[] args) {
BloomFilter<String> bloomFilter = BloomFilter.create(Funnels.stringFunnel(Charsets.UTF_8),expectedInsertions);
List<String> list = new ArrayList<>(expectedInsertions);
for (int i = 0; i < expectedInsertions; i++) {
String uuid = UUID.randomUUID().toString();
bloomFilter.put(uuid);
list.add(uuid);
}
int mightContainNum1 = 0;
NumberFormat percentFormat =NumberFormat.getPercentInstance();
percentFormat.setMaximumFractionDigits(2); //最大小数位数
for (int i=0;i < 500;i++){
String key = list.get(i);
if (bloomFilter.mightContain(key)){
mightContainNum1++;
}
}
System.out.println("【key真实存在的情况】布隆过滤器认为存在的key值数:" + mightContainNum1);
System.out.println("-----------------------分割线---------------------------------");
int mightContainNum2 = 0;
for (int i=0;i < expectedInsertions;i++){
String key = UUID.randomUUID().toString();
if (bloomFilter.mightContain(key)){
mightContainNum2++;
}
}
System.out.println("【key不存在的情况】布隆过滤器认为存在的key值数:" + mightContainNum2);
System.out.println("【key不存在的情况】布隆过滤器的误判率为:" + percentFormat.format((float)mightContainNum2 / expectedInsertions));
}
}
运行之后的结果为:
如何从10亿数据中快速判断是否存在某一个元素?今天总算知道了
第一部分输出的 mightContainNum1一定是和 for 循环内的值相等,也就是百分百匹配。即满足了原则 1:如果元素实际存在,那么布隆过滤器一定会判断存在。 第二部分的输出的误判率即 fpp 总是在 3% 左右,而且随着 for 循环的次数越大,越接近 3%。即满足了原则 2:如果元素不存在,那么布隆过滤器可能会判断存在。
这个 3% 的误判率是如何来的呢?我们进入创建布隆过滤器的 create 方法,发现默认的fpp就是 0.03:
如何从10亿数据中快速判断是否存在某一个元素?今天总算知道了
对于这个默认的 3% 的 fpp 需要多大的位数组空间和多少次哈希函数得到的呢?在 BloomFilter 类下面有两个 default 方法可以获取到位数组空间大小和哈希函数的个数:
debug 进去看一下:
如何从10亿数据中快速判断是否存在某一个元素?今天总算知道了
得到的结果是 7298440 bit=0.87M,然后经过了 5 次哈希运算。可以发现这个空间占用是非常小的,100W 的 key 才占用了 0.87M。
PS:点击这里可以进入网站计算 bit 数组大小和哈希函数个数。
布隆过滤器判断一个元素存在就是判断对应位置是否为 1 来确定的,但是如果要删除掉一个元素是不能直接把 1 改成 0 的,因为这个位置可能存在其他元素,所以如果要支持删除,那我们应该怎么做呢?最简单的做法就是加一个计数器,就是说位数组的每个位如果不存在就是 0,存在几个元素就存具体的数字,而不仅仅只是存 1,那么这就有一个问题,本来存 1 就是一位就可以满足了,但是如果要存具体的数字比如说 2,那就需要 2 位了,所以带有计数器的布隆过滤器会占用更大的空间。
下面就是一个带有计数器的布隆过滤器示例:
<dependency>
<groupId>com.baqend</groupId>
<artifactId>bloom-filter</artifactId>
<version>1.0.7</version>
</dependency>
package com.lonelyWolf.redis.bloom;
import orestes.bloomfilter.FilterBuilder;
public class CountingBloomFilter {
public static void main(String[] args) {
orestes.bloomfilter.CountingBloomFilter<String> cbf = new FilterBuilder(10000,
0.01).countingBits(8).buildCountingBloomFilter();
cbf.add("zhangsan");
cbf.add("lisi");
cbf.add("wangwu");
System.out.println("是否存在王五:" + cbf.contains("wangwu")); //true
cbf.remove("wangwu");
System.out.println("是否存在王五:" + cbf.contains("wangwu")); //false
}
}
构建布隆过滤器前面 2 个参数一个就是期望的元素数,一个就是 fpp 值,后面的 countingBits 参数就是计数器占用的大小,这里传了一个 8 位,即最多允许 255 次重复,如果不传的话这里默认是 16 位大小,即允许 65535次重复。
本文主要讲述了使用 Redis 存在的三种问题:缓存雪崩,缓存击穿和缓存穿透。并分别对每种问题的解决方案进行了描述,最后着重介绍了缓存穿透的解决方案:布隆过滤器。原生的布隆过滤器不支持删除,但是可以引入一个计数器实现带有计数器的布隆过滤器来实现删除功能,同时在最后也提到了,带有计数器的布隆过滤器会占用更多的空间问题。