概述
主成分分析法是一种降维的统计方法,在机器学习中可以作为数据提取的手段。
主成分分析:构造一个A,b,使Y=AX+b。其中A维度M*N,X维度N*1,b维度M*1,则Y维度M*1。
主成分分析可以看成是一个一层的,有M个神经元的神经网络(即Y=WTX+b,主成分分析和该公式本质一样)。
PCA和自编码器差不多。
主成分分析:寻找使方差最大的方向,并在该方向投影。
ai代表一个投影方向。
找一个a1,使得yi1方差最大
PCA算法推导
限制a1是单位矢量
所以
接下来,求第二大的维度a2,二维上a2只有一个选择,或者说没得选,但三维上及更高维上,a2有多种选择:
证明β=0:
所以:
推而广之,a3:
注意:
对每一个人,用前两次拍摄4张图片训练,用后两次拍摄4张图片测试。
训练数据:295*4=1180张, 测试数据:1180张。
做PCA后,取前100维向量进行测试。
平均脸,就是x的均值;特征脸,是每个特征值。
比如a1,面颊特别亮,说明面部是识别最有效的地方,而头发处比较黑,说明头发地方不是很有效。
同理,可以把神经网络Y=WT+b中的W拿出来看一下。
如果只有这么点头像,如何用神经网络训练?迁移学习。
扫码关注腾讯云开发者
领取腾讯云代金券
Copyright © 2013 - 2025 Tencent Cloud. All Rights Reserved. 腾讯云 版权所有
深圳市腾讯计算机系统有限公司 ICP备案/许可证号:粤B2-20090059 深公网安备号 44030502008569
腾讯云计算(北京)有限责任公司 京ICP证150476号 | 京ICP备11018762号 | 京公网安备号11010802020287
Copyright © 2013 - 2025 Tencent Cloud.
All Rights Reserved. 腾讯云 版权所有