前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >gcc编译时,链接器安排的【虚拟地址】是如何计算出来的?

gcc编译时,链接器安排的【虚拟地址】是如何计算出来的?

作者头像
IOT物联网小镇
发布于 2022-04-06 09:31:29
发布于 2022-04-06 09:31:29
1.4K00
代码可运行
举报
文章被收录于专栏:IOT物联网小镇IOT物联网小镇
运行总次数:0
代码可运行

作 者:道哥,10+年嵌入式开发老兵,专注于:C/C++、嵌入式、Linux

目录

  • 问题描述
  • ELF 文件格式
  • 地址转换和内存映射
  • Linux 中的内存重复映射
  • 小结

问题描述

昨天下午,旁边的同事在学习Linux系统中的虚拟地址映射(经典书籍《程序员的自我修养-链接、装载与库》),在看到6.4章节的时候,对于一个可执行的ELF文件中,虚拟地址的值百思不得其解!

例如下面这段C代码:

首先编译出32位的可执行程序(为了避开一些与主题无关的干扰因素,采用了静态链接):

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
gcc -m32 -static test.c -o test

编译得到ELF格式的可执行文件:test

这个时候,使用readelf工具来查看这个可执行文件中的段信息(segment):

上图中的红色矩形框中,第二个段的地址为什么是 0x080e_9f5c

这篇文章主要根据书中的解释,来具体的分析这个值的来龙去脉。

ELF 文件格式

Linux系统中,有4种类型的文件都是ELF格式,包括:目标文件,可执行文件,动态链接库文件、核心转储文件。

如果想系统掌握Linux系统中的底层知识,研究ELF的格式是避免不了的事情。

很久之前总结过这篇文章:《Linux系统中编译、链接的基石-ELF文件:扒开它的层层外衣,从字节码的粒度来探索》,里面详细总结了ELF文件的内部结构。

这里就不再赘述了,只要记住2点:

  1. 编译器的角度看,ELF 文件是由很多的节(Section)组成的;
  2. 从程序加载器的角度看,ELF 文件是又很多的段(Segment)组成的;

其实它俩没有本质区别,只不过是链接器在链接阶段,把不同目标文件中相同的section组织在一起,形成一个 segment

对于刚才编译出的test可执行文件,其加载视图如下:

可以看到该文件一共有5个段(segment),前2个需要LOAD到内存的段,它们属性分别是:读、执行(R E) 和 读、写(RW),它们分别是代码段和数据段。

绿色的箭头反映出:代码段中包含了很多的 section;黄色的箭头反映出数据段也包含了很多的 section

地址转换和内存映射

从地址转换的角度来看:

Linux 系统中CPU中使用的都是虚拟地址,该虚拟地址在寻址的时候,需要经过MMU地址转换,得到实际的物理地址,然后才能在物理内存中读取指令,或者读取、写入数据。

在现代操作系统中,MMU地址转换单元基本上都是通过页表来进行地址转换的:

当然了,有些系统是两级转换(页目录、页表),有些系统是三级或者四级页表。

从内存映射的角度来看:

操作系统在把一个可执行程序加载到系统中时,把ELF文件中每个段的内容读取到物理内存中,然后把这个物理内存映射到该段对应的虚拟地址上(VirtAddr)。

假设一个可执行程序中的代码段长度是1.2K字节, 数据段长度是1.3K字节。

操作系统在把它俩读取到内存中时,需要 2 个物理内存页来分别存储它们(每 1 个物理页的长度是4K):

虽然每一个物理内存页的大小是 4K,但是代码段和数据段实际上只使用了每个页面刚开始的一段空间。

CPU中需要读取物理内存上代码段中的指令时,使用的虚拟地址是 0x0000_1000 ~ 0x0000_1000 + 1.2K这个区间的地址,MMU单元经过页表转换之后,就会得到这个存放着代码段的物理页的物理地址。

数据段的寻址方式也是如此:当CPU中需要读写物理内存上数据段中的数据时,使用的虚拟地址是 0x0000_2000 ~ 0x0000_2000 + 1.3K这个区间的地址。

MMU单元经过页表转换之后,就会得到存放着数据段的物理页的物理地址。

可以看出在这样的安排下,每一个段的虚拟地址,都是按照4K(0x1000)对齐的。

如果操作系统都是这样简单映射的话,那么事情就简单多了。

如果按照这样的安排,来分析一下文章开头的 test 可执行程序中的虚拟地址安排:

  1. 代码段安排的开始虚拟地址是 0x0804_8000,这是 4K 对齐的;
  2. 代码段的结束虚拟地址就应该是 0x0804_8000 + 0xa0725 = 0x080e_8725;
  3. 那么数据段的开始地址就可以安排在 0x080e_8725 之后的下一个 4K 对齐的边界地址,即:0x080e_9000。

但是这样的地址安排,严重浪费了物理内存空间!

1.2K 字节的代码段加上1.3K字节的数据段,本来只需要1个物理页就够了(4KB),但是这里却消耗掉2个物理页(8KB)。

为了减少物理内存的浪费,Linux操作系统就采用了一些巧妙的办法来减少物理内存的浪费,那就是: 把文件中接壤部分的代码段和数据段,读取到同一个物理内存页中,然后在虚拟地址空间中映射两次,详述如下。

Linux 中的内存重复映射

先来看一下test文件的结构:

代码段在文件中的开始位置是:0x00000,长度是 0xa0725

数据段的开始位置是:0xa0f5c,长度是0x1024

可以看到它俩之间有一个空白区间,长度是: 0xa0f5c - 0xa0725 = 0x837(十进制:2103字节)。

由于操作系统在把test文件读取到物理内存的时候,从文件开始代码段的0x00000地址开始读取,按照4KB为一个单位存放到一个物理页中。

  1. 文件中代码段的 0x00000 ~ 0x00FFF 读取到一个物理页中;
  2. 文件中代码段的 0x01000 ~ 0x01FFF 读取到物理页中;
  3. 下面的内容都是如此分割、复制;

也就是说:相当于把test文件从开始位置,按照4KB为一个单位进行"切割",然后复制到不同的物理内存页中,如下所示:

注意:这些物理页的地址很可能是不连续的。

这里有意思的是:代码段与数据段接壤的这个4KB的空间,它的开始地址是0xA0000,结束地址是0xA0FFF,被复制到物理内存中最上面的橙色物理页中。

再来看一下代码段的虚拟地址:在执行gcc指令的的时候,链接器把代码段的虚拟地址安排在0x0804_8000处:

也就是说:当CPU中(或者说程序代码中),使用0x0804_8000 ~ 0x0804_7FFF 这个区间的地址时,经过地址映射,就会找到物理内存中浅绿色的物理页,而这个物理页也对应着test可执行文件开始的第一个4KB的空间。

而且,从虚拟地址的角度看,它的地址都是连续的,对应着test文件中连续的内容,这也是虚拟地址映射的本质。

把代码段的开始位置安排在 0x0804_8000 地址,这是 Linux 操作系统确定的。

那么考虑一下:代码段的最后一部分指令相应的4K页面,其对应的开始虚拟地址是多少呢?

上图中已经标记出来了,就是虚拟地址中橙色部分:0x080e_8000,计算如下:

通过代码段的开始地址0x0804_8000,再加上代码段在内存中的长度0xa0725,结果就是 0x080e_8725

按照4K (0x1000)对齐之后,最后一个虚拟页就应该是0x080e_8000

也就是说:虚拟地址中0x080e_8000 ~ 0x080e_8724 这个区间就对应着test文件中代码段的最后一部分指令(0x725个字节)。

此外,上图中最右侧:test文件结构中的2个红色地址:0xA0000, 0xA1000,是如何计算得到的?

代码段的长度是 0xA0725,按照4K为一个单位来进行分割,也就是把0xA07250x1000进行整除,就得到这个4KB的开始地址0xA0000

同理,下一个4KB的开始地址就是0xA1000

把文件中这部分4K的数据(包括:一部分代码段内容 + 0x837 字节空洞 + 一部分数据段内容),复制到上图中物理内存中最上面的橙色物理页中。

又因为虚拟地址空间中,0x080E_8000开始的这个4KB空间映射到这个物理页中,所以:在这个虚拟地址空间中,也有一个0x837字节的空洞,如下所示:

空洞的下方,是代码段的指令;空洞的上方,是数据段的数据。

现在,这个物理页中即存放了代码,又存放了数据。

那么CPU中在查找部分的代码和数据的时候,必须都能够找得到才行!

对于代码段比较好理解:从这个物理页开始的前0x725个字节是有效的,从虚拟地址的角度看,就是从0x080e_8000开始的前0x725个字节是有效的。

因此,对于这部分代码的寻址,使用的虚拟地址处于0x080e_8000 ~ 0x080e_8724这个区间中。

那么数据段呢?

重点来了:Linux系统把虚拟地址空间 0x080e_9000 ~ 0x080e_9FFF 也映射到图中物理内存中最上面的橙色物理页上!

如下所示:

因为物理页中,是从0x837个字节空洞的上面开始,才是真正的数据段内容,那么相应的: 虚拟地址0x080e_9000 ~ 0x080e_9FFF空间中,0x837字节上面的内容才是数据段内容。

那么在虚拟地址空间中,这个数据段的开始地址应该是多少呢?

只要计算出0x837字节空洞的上方,距离这个4K页面开始地址的偏移量就可以了,然后再加上这个4K页面的起始地址 0x080E_9000,就得到了数据段的开始地址(虚拟地址)。

因为虚拟地址、物理地址、test文件中,都是按照4K的单位进行划分的,因此这个偏移量就等于:test文件中数据段的开始地址(0xA0F5C) 距离 这个页面的开始地址(0xA0000) 的偏移量。

0xA0F5C - 0xA0000 = 0xF5C

即:从这个4K页面的开始地址,偏移量为0xF5C的地方,才是数据段内容的开始。

因此对于虚拟地址来说,从0x080e_9000地址开始,偏移量为0xF5C之后的内容才是数据段的内容,这个地址值就是:0x080e_9000 + 0xF5C = 0x080e_9F5C,如下所示:

这个地址正是readelf工具读所显示的:数据段加载到虚拟地址空间中的开始地址,如下所示:

至此,就解释了文章开头提出的问题!

再来看一下整个数据段的内容:在内存中数据段占据的空间是 0x01e48(readelf 工具读取到的 MemSiz),那么数据段的结束地址就是(虚拟地址):

0x080e_9F5C + 0x01e48 = 0x080e_bda4

如下所示:

小结

Linux系统中的这个操作:对属于不同段的内容进行重复映射,有点类似于共享内存的味道了。

只不过这里重复映射之后,每个段的虚拟地址还是需要修正为该段的合法地址。

经过这样的操作之后,在虚拟地址中每一个段的界限是泾渭分明的,但是映射到的物理内存页,则有可能是同一个。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2022-02-24,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 IOT物联网小镇 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
【图片+代码】:GCC 链接过程中的【重定位】过程分析
最近因为项目上的需要,利用动态链接库来实现一个插件系统,顺便就复习了一下关于Linux中一些编译、链接相关的内容。
IOT物联网小镇
2022/04/06
8450
【图片+代码】:GCC 链接过程中的【重定位】过程分析
Linux可执行文件与进程的虚拟地址空间
一个可执行文件被执行的同时也伴随着一个新的进程的创建。Linux会为这个进程创建一个新的虚拟地址空间,然后会读取可执行文件的文件头,建立虚拟地址空间与可执行文件的映射关系,然后将CPU的指令指针寄存器设置成可执行文件的入口地址,然后CPU就会从这里取指令执行。
刘盼
2020/05/07
4.4K0
【内存管理】内存布局介绍
32位操作系统的内存布局很经典,很多书籍都是以32位系统为例子去讲解的。32位的系统可访问的地址空间为4GB,用户空间为1GB ~ 3GB,内核空间为3GB ~ 4GB。
嵌入式与Linux那些事
2024/07/04
2080
【内存管理】内存布局介绍
windows虚拟内存机制
在windows系统中个,每个进程拥有自己独立的虚拟地址空间(Virtual Address Space)。这一地址空间的大小与计算机硬件、操作系统以及应用程序都有关系。
全栈程序员站长
2022/07/20
1.3K0
windows虚拟内存机制
Linux虚拟地址空间布局
在多任务操作系统中,每个进程都运行在属于自己的内存沙盘中。这个沙盘就是虚拟地址空间(Virtual Address Space),在32位模式下它是一个4GB的内存地址块。在Linux系统中, 内核进程和用户进程所占的虚拟内存比例是1:3,而Windows系统为2:2(通过设置Large-Address-Aware Executables标志也可为1:3)。这并不意味着内核使用那么多物理内存,仅表示它可支配这部分地址空间,根据需要将其映射到物理内存。
sunsky
2020/10/28
3.4K0
Linux虚拟地址空间布局
rust写操作系统 rCore tutorial 学习笔记:实验指导三 虚拟地址与页表
这是 os summer of code 2020 项目每日记录的一部分: 每日记录github地址(包含根据实验指导实现的每个阶段的代码):https://github.com/yunwei37/os-summer-of-code-daily
云微
2023/02/11
7530
操作系统段页结合的实际内存管理--13
能否站在程序员的视角看来,程序分段存放在内存上的模样是连续的,但是站在物理内存视角看来,却是分页管理的呢?
大忽悠爱学习
2022/08/23
9050
操作系统段页结合的实际内存管理--13
【Linux】虚拟地址空间 --- 虚拟地址、空间布局、内存描述符、写时拷贝、页表…
1. 从程序的运行结果可以看出一些端倪,就是一个全局变量在地址并未改变的情况下,竟然出现了不同的值,这说明什么呢?首先一个变量肯定是只能有一个值的,但是地址只有一个,而变量的值却出现了两个,那么就必须说明一个结论,现在在内存中应该出现了两个变量了,因为一个变量是绝对不可能出现两个值的,所以我们可以推导出的结论就是内存中现在一定出现了两个全局变量global_value。
举杯邀明月
2023/04/12
1.6K0
【Linux】虚拟地址空间 --- 虚拟地址、空间布局、内存描述符、写时拷贝、页表…
Liunux内核内存管理之虚拟地址空间
虚拟内存就是在你电脑的物理内存不够用时把一部分硬盘空间作为内存来使用,这部分硬盘空间就叫作虚拟内存。
嵌入式Linux内核
2022/09/23
1.2K0
Liunux内核内存管理之虚拟地址空间
Linux从头学15:【页目录和页表】-理论 + 实例 + 图文的最完全、最接地气详解
在x86系统中,为了能够更加充分、灵活的使用物理内存,把物理内存按照4KB的单位进行分页。
IOT物联网小镇
2021/10/19
1.5K0
Linux从头学15:【页目录和页表】-理论 + 实例 + 图文的最完全、最接地气详解
计算机系统 Lecture 1:虚拟内存详解
因此,现代计算机系统通常把各种不同存储容量、存取速度和价格的存储器按照一定的体系组成多层结构,以解决存储器容量、存取速度和价格之间的矛盾。
Flowlet
2023/08/11
5250
计算机系统 Lecture 1:虚拟内存详解
xv6(2) 启动代码部分
本文来说码,实打实地来看看计算机到底是如何启动的,先来看看 $xv6$ 启动的整体流程图,好有个大概认识:
rand_cs
2023/12/03
4240
Linux从头学03:如何告诉 CPU,代码段、数据段、栈段在内存中什么位置?
前两篇文章,我们一起学习了 8086 处理器中关于 CPU、内存的基本使用方式,重点对段寄存器和内存的寻址方式进行了介绍。
IOT物联网小镇
2021/07/20
2.4K0
Linux下内存空间分配、物理地址与虚拟地址映射
Kmalloc分配的是连续的物理地址空间。如果需要连续的物理页,可以使用此函数,这是内核中内存分配的常用方式,也是大多数情况下应该使用的内存分配方式。
DS小龙哥
2023/01/18
3.8K0
linux系统编程之基础必备(五):Linux进程地址空间和虚拟内存
该文介绍了Linux系统编程中进程地址空间的基本概念和详细说明。包括分段机制、虚拟地址、分页机制、环境变量、命令行参数、栈、共享库和mmap内存映射区等。
s1mba
2018/01/03
2.4K0
linux系统编程之基础必备(五):Linux进程地址空间和虚拟内存
【Linux篇】深入解析分页式存储管理:虚拟地址、页表与缺页异常的机制详解
分页式存储管理是操作系统中用于高效管理内存资源的一种关键技术,其核心思想是将程序的逻辑地址空间与物理内存空间解耦,通过非连续映射实现灵活的内存分配。
熬夜学编程的小王
2025/05/03
2110
【Linux篇】深入解析分页式存储管理:虚拟地址、页表与缺页异常的机制详解
xv6 启动理论部分
本节来说说捋清启动需要知道的一些东西,因知识点的确很多,涉及了各个方面,我就不像其他章节一样各个部分前后有比较紧密的联系,而是直接以干货的形式罗列出来,这样或许更清晰些,不多说了来看
rand_cs
2023/12/02
3940
全民K歌内存篇2——虚拟内存浅析
《全民K歌内存篇1——线上监控与综合治理》 《全民K歌内存篇2——虚拟内存浅析》 《全民K歌内存篇3——native内存分析与监控》 一、简介 在多任务操作系统中,每个进程都拥有独立的虚拟地址空间,通过虚拟地址进行内存访问主要具备以下几点优势: 进程可使用连续的地址空间来访问不连续的物理内存,内存管理方面得到了简化。 实现进程与物理内存的隔离,对各个进程的内存数据起到了保护的作用。 程序可使用远大于可用物理内存的地址空间,虚拟地址在读写前不占用实际的物理内存,并为内存与磁盘的交换提供了便利。 Androi
QQ音乐技术团队
2021/03/04
4.1K0
内存管理专栏 | 之内存管理架构
一、内存管理架构 二、虚拟地址空间布局架构 三、物理内存体系架构 四、内存结构 五、内存模型 六、虚拟地址和物理地址的转换 七、内存映射原理分析 一、内存管理架构 内存管理子系统架构可以分为:用户空间、内核空间及硬件部分3个层面,具体结构如下所示:1、用户空间:应用程序使用malloc()申请内存资源/free()释放内存资源。2、内核空间:内核总是驻留在内存中,是操作系统的一部分。内核空间为内核保留,不允许应用程序读写该区域的内容或直接调用内核代码定义的函数。3、硬件:处理器包含一个内存管理单元(Memo
刘盼
2022/09/02
1.6K0
内存管理专栏 | 之内存管理架构
关于进程虚拟内存
由于内存数据是固定的一个大数组,而操作系统往往是运行多个程序,如果这些程序都直接访问内存数组的话,就出现了以下问题:
仙士可
2022/02/18
2.1K0
关于进程虚拟内存
推荐阅读
相关推荐
【图片+代码】:GCC 链接过程中的【重定位】过程分析
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档
本文部分代码块支持一键运行,欢迎体验
本文部分代码块支持一键运行,欢迎体验