前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >聊聊大模型的微调实现及其应用

聊聊大模型的微调实现及其应用

作者头像
Ryan_OVO
发布2024-03-16 08:19:16
3780
发布2024-03-16 08:19:16
举报
文章被收录于专栏:程序随笔

微调框架概述

模型的微调有多种方式,对于入门的来说,一般都是基于官方的文档微调;最近发现很多开源库,其目的就是支持应用多种微调策略来微调模型,简化模型的微调门槛。比如 ChatGLM-Efficient-TuningLLaMA-Factory。其架构逻辑如下:

最近试玩了这两个框架,个人觉得蛮好的,先不说实际的调试效果,这取决于多种因素,总的来说还是很方便快捷的。方便快捷的基于多种微调策略调试LLM;同时支持多种数据集类型。

LLaMA-Factory

这个开源库相比较其余的库,更全面,更方便。有如下几点我是比较喜欢的。

  1. 训练方法
    1. 如图,多种训练方法都支持,很全面。不过这里的预训练,我理解为是增量预训练;即准备大量的文本数据训练。
    2. 支持全参数、部分参数、LoRA等策略微调。
    3. 降低门槛,一键训练。对于学习来说,可以增加知识面及使用。
image.png
image.png
  1. 数据集
    1. 支持多种数据集:增量预训练数据集、指令微调数据集、偏好数据集;在官方文档都是有说明的。
    2. 每次微调前,我都需要斟酌数据集的准备、格式等;但开源库已经准备的很齐全而且各种场景的数据格式都有,直接参考即可;比如单轮对话、多轮对话、指令格式等等。这就极大的方便了数据集的准备。
  2. 其它
    1. 当然还有分布式训练、web界面操作等等

ChatGLM-Finetuning

Finetuning 是专门基于GLM系列的微调库,我个人也试用,还是很方便快速的,而且文档比较清晰,只是在部署时比较简陋,但对于要学习了解微调及LLM一些原理来说,还是很适合入门钻研的。

应用

目前绝大多数的大模型都是基于基座模型(GLM、QWen、LlaMa、BaiChuan)等微调训练而来,不过实现的逻辑却是有多种,要么基于官方的微调文档,要么基于开源微调库实现。CareGPT 就是基于开源微调库LLaMA-Factory实现的医疗领域大模型。其架构设计如下:

在其架构设计中,有两个部分比较值得关注:

  1. 微调框架的集成
    1. 通过集成了微调框架,调用底层具备的能力,准备多种格式的数据集微调模型。
  2. 数据开放
    1. 基于开源医疗数据集,准备增量预训练预料、指令监督预料、SFT预料等等;扩充基座模型的领域知识能力。

总结

基于个人使用及学习的角度,介绍了微调框架的概述及其应用。在这里面的道道还是蛮多的,有一定的大模型知识再基于这些库去做参考去做应用,将极大的降低LLM的应用门槛。更有甚者可以了解底层的实现逻辑。

转载请备注出处: https://www.cnblogs.com/zhiyong-ITNote

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2024-03-15,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 微调框架概述
    • LLaMA-Factory
      • ChatGLM-Finetuning
      • 应用
      • 总结
      领券
      问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档