前往小程序,Get更优阅读体验!
立即前往
发布
社区首页 >专栏 >【YOLOv8】YOLOv8改进系列(3)----替换主干网络之ConvNeXt V2

【YOLOv8】YOLOv8改进系列(3)----替换主干网络之ConvNeXt V2

作者头像
HABuo
发布2025-02-26 08:48:56
发布2025-02-26 08:48:56
3300
代码可运行
举报
运行总次数:0
代码可运行

💯一、ConvNeXt V2介绍

  • 论文题目:《ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders》
  • 论文地址:2301.00808

1. 简介

论文提出了一个全卷积掩码自编码器框架和一个新的全局响应归一化(Global Response Normalization, GRN)层,用于增强 ConvNeXt 架构中通道间的特征竞争。这种自监督学习技术和架构改进的结合,形成了新的模型家族 ConvNeXt V2。

2. ConvNeXt V2架构

ConvNeXt V2 是在 ConvNeXt V1 的基础上改进而来,主要引入了以下两个关键创新:

2.1 全卷积掩码自编码器(FCMAE)

FCMAE 是一种全卷积的自监督学习框架,用于预训练 ConvNeXt V2 模型。其核心思想是随机掩盖输入图像的一部分,并让模型根据剩余的上下文预测被掩盖的部分。FCMAE 的主要组件包括:

  • 掩码策略:随机掩盖输入图像的60%。
  • 编码器设计:使用 ConvNeXt 模型作为编码器,并引入稀疏卷积(sparse convolution)来处理被掩盖的图像,防止信息从被掩盖区域泄露。
  • 解码器设计:使用轻量级的 ConvNeXt 块作为解码器,简化了整体架构。
  • 重建目标:计算重建图像与目标图像之间的均方误差(MSE),仅在被掩盖的区域计算损失。
2.2 全局响应归一化(GRN)

GRN 是一种新的归一化层,旨在增强通道间的特征竞争,解决 ConvNeXt V1 在掩码自编码器预训练时出现的特征坍塌问题。GRN 的工作流程包括:

  1. 全局特征聚合:通过全局函数聚合特征图。
  2. 特征归一化:对聚合后的特征进行归一化处理。
  3. 特征校准:将归一化后的特征重新校准到原始输入中。

GRN 的引入显著提高了模型在掩码自编码器预训练下的性能,且无需额外的参数开销。


3. 实验结果

论文通过一系列实验验证了 ConvNeXt V2 的性能提升,主要体现在以下几个方面:

3.1 ImageNet分类

ConvNeXt V2 在 ImageNet 分类任务上表现出色,尤其是在使用 FCMAE 预训练后,性能提升显著。例如:

  • Atto模型(3.7M 参数)在 ImageNet 上达到了 76.7% 的 top-1 准确率。
  • Huge模型(650M 参数)达到了 88.9% 的 top-1 准确率,刷新了使用公开数据的最高记录。
3.2 COCO目标检测和分割

在 COCO 数据集上,使用 Mask R-CNN 进行微调时,ConvNeXt V2 的性能优于 ConvNeXt V1 和其他基于 Swin Transformer 的模型。例如:

  • Base模型的 AP box 提升到 52.9%,AP mask 提升到 70.0%。
  • Huge模型的 AP box 提升到 55.7%,AP mask 提升到 72.8%。
3.3 ADE20K语义分割

在 ADE20K 数据集上,使用 UperNet 进行微调时,ConvNeXt V2 的性能也优于 ConvNeXt V1 和其他基于 Swin Transformer 的模型。例如:

  • Base模型的 mIoU 提升到 52.1%。
  • Huge模型的 mIoU 提升到 55.0%。

4. 关键结论

  • 架构与学习框架的协同设计:通过重新设计 ConvNeXt 架构和自监督学习框架,ConvNeXt V2 在多种视觉任务上表现出色,证明了架构与学习框架协同设计的重要性。
  • 掩码自编码器的有效性:FCMAE 框架使得 ConvNeXt V2 能够从掩码自编码器预训练中受益,显著提升了性能。
  • GRN层的作用:GRN 层通过增强特征多样性,解决了 ConvNeXt V1 在掩码自编码器预训练时的特征坍塌问题,是 ConvNeXt V2 性能提升的关键。

💯二、具体添加方法

第①步:创建convnextv2.py

创建完成后,将下面代码直接复制粘贴进去:

代码语言:javascript
代码运行次数:0
复制
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from timm.models.layers import trunc_normal_, DropPath

__all__ = ['convnextv2_atto', 'convnextv2_femto', 'convnextv2_pico', 'convnextv2_nano', 'convnextv2_tiny', 'convnextv2_base', 'convnextv2_large', 'convnextv2_huge']

class LayerNorm(nn.Module):
    """ LayerNorm that supports two data formats: channels_last (default) or channels_first. 
    The ordering of the dimensions in the inputs. channels_last corresponds to inputs with 
    shape (batch_size, height, width, channels) while channels_first corresponds to inputs 
    with shape (batch_size, channels, height, width).
    """
    def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
        super().__init__()
        self.weight = nn.Parameter(torch.ones(normalized_shape))
        self.bias = nn.Parameter(torch.zeros(normalized_shape))
        self.eps = eps
        self.data_format = data_format
        if self.data_format not in ["channels_last", "channels_first"]:
            raise NotImplementedError 
        self.normalized_shape = (normalized_shape, )
    
    def forward(self, x):
        if self.data_format == "channels_last":
            return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
        elif self.data_format == "channels_first":
            u = x.mean(1, keepdim=True)
            s = (x - u).pow(2).mean(1, keepdim=True)
            x = (x - u) / torch.sqrt(s + self.eps)
            x = self.weight[:, None, None] * x + self.bias[:, None, None]
            return x

class GRN(nn.Module):
    """ GRN (Global Response Normalization) layer
    """
    def __init__(self, dim):
        super().__init__()
        self.gamma = nn.Parameter(torch.zeros(1, 1, 1, dim))
        self.beta = nn.Parameter(torch.zeros(1, 1, 1, dim))

    def forward(self, x):
        Gx = torch.norm(x, p=2, dim=(1,2), keepdim=True)
        Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6)
        return self.gamma * (x * Nx) + self.beta + x

class Block(nn.Module):
    """ ConvNeXtV2 Block.
    
    Args:
        dim (int): Number of input channels.
        drop_path (float): Stochastic depth rate. Default: 0.0
    """
    def __init__(self, dim, drop_path=0.):
        super().__init__()
        self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim) # depthwise conv
        self.norm = LayerNorm(dim, eps=1e-6)
        self.pwconv1 = nn.Linear(dim, 4 * dim) # pointwise/1x1 convs, implemented with linear layers
        self.act = nn.GELU()
        self.grn = GRN(4 * dim)
        self.pwconv2 = nn.Linear(4 * dim, dim)
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()

    def forward(self, x):
        input = x
        x = self.dwconv(x)
        x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C)
        x = self.norm(x)
        x = self.pwconv1(x)
        x = self.act(x)
        x = self.grn(x)
        x = self.pwconv2(x)
        x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W)

        x = input + self.drop_path(x)
        return x

class ConvNeXtV2(nn.Module):
    """ ConvNeXt V2
        
    Args:
        in_chans (int): Number of input image channels. Default: 3
        num_classes (int): Number of classes for classification head. Default: 1000
        depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3]
        dims (int): Feature dimension at each stage. Default: [96, 192, 384, 768]
        drop_path_rate (float): Stochastic depth rate. Default: 0.
        head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1.
    """
    def __init__(self, in_chans=3, num_classes=1000, 
                 depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], 
                 drop_path_rate=0., head_init_scale=1.
                 ):
        super().__init__()
        self.depths = depths
        self.downsample_layers = nn.ModuleList() # stem and 3 intermediate downsampling conv layers
        stem = nn.Sequential(
            nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4),
            LayerNorm(dims[0], eps=1e-6, data_format="channels_first")
        )
        self.downsample_layers.append(stem)
        for i in range(3):
            downsample_layer = nn.Sequential(
                    LayerNorm(dims[i], eps=1e-6, data_format="channels_first"),
                    nn.Conv2d(dims[i], dims[i+1], kernel_size=2, stride=2),
            )
            self.downsample_layers.append(downsample_layer)

        self.stages = nn.ModuleList() # 4 feature resolution stages, each consisting of multiple residual blocks
        dp_rates=[x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] 
        cur = 0
        for i in range(4):
            stage = nn.Sequential(
                *[Block(dim=dims[i], drop_path=dp_rates[cur + j]) for j in range(depths[i])]
            )
            self.stages.append(stage)
            cur += depths[i]

        self.norm = nn.LayerNorm(dims[-1], eps=1e-6) # final norm layer
        self.head = nn.Linear(dims[-1], num_classes)

        self.apply(self._init_weights)
        self.channel = [i.size(1) for i in self.forward(torch.randn(1, 3, 640, 640))]

    def _init_weights(self, m):
        if isinstance(m, (nn.Conv2d, nn.Linear)):
            trunc_normal_(m.weight, std=.02)
            nn.init.constant_(m.bias, 0)

    def forward(self, x):
        res = []
        for i in range(4):
            x = self.downsample_layers[i](x)
            x = self.stages[i](x)
            res.append(x)
        return res

def update_weight(model_dict, weight_dict):
    idx, temp_dict = 0, {}
    for k, v in weight_dict.items():
        if k in model_dict.keys() and np.shape(model_dict[k]) == np.shape(v):
            temp_dict[k] = v
            idx += 1
    model_dict.update(temp_dict)
    print(f'loading weights... {idx}/{len(model_dict)} items')
    return model_dict

def convnextv2_atto(weights='', **kwargs):
    model = ConvNeXtV2(depths=[2, 2, 6, 2], dims=[40, 80, 160, 320], **kwargs)
    if weights:
        model.load_state_dict(update_weight(model.state_dict(), torch.load(weights)['model']))
    return model

def convnextv2_femto(weights='', **kwargs):
    model = ConvNeXtV2(depths=[2, 2, 6, 2], dims=[48, 96, 192, 384], **kwargs)
    if weights:
        model.load_state_dict(update_weight(model.state_dict(), torch.load(weights)['model']))
    return model

def convnextv2_pico(weights='', **kwargs):
    model = ConvNeXtV2(depths=[2, 2, 6, 2], dims=[64, 128, 256, 512], **kwargs)
    if weights:
        model.load_state_dict(update_weight(model.state_dict(), torch.load(weights)['model']))
    return model

def convnextv2_nano(weights='', **kwargs):
    model = ConvNeXtV2(depths=[2, 2, 8, 2], dims=[80, 160, 320, 640], **kwargs)
    if weights:
        model.load_state_dict(update_weight(model.state_dict(), torch.load(weights)['model']))
    return model

def convnextv2_tiny(weights='', **kwargs):
    model = ConvNeXtV2(depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], **kwargs)
    if weights:
        model.load_state_dict(update_weight(model.state_dict(), torch.load(weights)['model']))
    return model

def convnextv2_base(weights='', **kwargs):
    model = ConvNeXtV2(depths=[3, 3, 27, 3], dims=[128, 256, 512, 1024], **kwargs)
    if weights:
        model.load_state_dict(update_weight(model.state_dict(), torch.load(weights)['model']))
    return model

def convnextv2_large(weights='', **kwargs):
    model = ConvNeXtV2(depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536], **kwargs)
    if weights:
        model.load_state_dict(update_weight(model.state_dict(), torch.load(weights)['model']))
    return model

def convnextv2_huge(weights='', **kwargs):
    model = ConvNeXtV2(depths=[3, 3, 27, 3], dims=[352, 704, 1408, 2816], **kwargs)
    if weights:
        model.load_state_dict(update_weight(model.state_dict(), torch.load(weights)['model']))
    return model

第②步:修改task.py

(1)引入创建的convnextv2文件
代码语言:javascript
代码运行次数:0
复制
from ultralytics.nn.backbone.convnextv2 import *
(2)修改_predict_once函数
代码语言:javascript
代码运行次数:0
复制
    def _predict_once(self, x, profile=False, visualize=False, embed=None):
        """
        Perform a forward pass through the network.
        Args:
            x (torch.Tensor): The input tensor to the model.
            profile (bool):  Print the computation time of each layer if True, defaults to False.
            visualize (bool): Save the feature maps of the model if True, defaults to False.
            embed (list, optional): A list of feature vectors/embeddings to return.
        Returns:
            (torch.Tensor): The last output of the model.
        """
        y, dt, embeddings = [], [], []  # outputs
        for idx, m in enumerate(self.model):
            if m.f != -1:  # if not from previous layer
                x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers
            if profile:
                self._profile_one_layer(m, x, dt)
            if hasattr(m, 'backbone'):
                x = m(x)
                for _ in range(5 - len(x)):
                    x.insert(0, None)
                for i_idx, i in enumerate(x):
                    if i_idx in self.save:
                        y.append(i)
                    else:
                        y.append(None)
                # print(f'layer id:{idx:>2} {m.type:>50} output shape:{", ".join([str(x_.size()) for x_ in x if x_ is not None])}')
                x = x[-1]
            else:
                x = m(x)  # run
                y.append(x if m.i in self.save else None)  # save output
            
            # if type(x) in {list, tuple}:
            #     if idx == (len(self.model) - 1):
            #         if type(x[1]) is dict:
            #             print(f'layer id:{idx:>2} {m.type:>50} output shape:{", ".join([str(x_.size()) for x_ in x[1]["one2one"]])}')
            #         else:
            #             print(f'layer id:{idx:>2} {m.type:>50} output shape:{", ".join([str(x_.size()) for x_ in x[1]])}')
            #     else:
            #         print(f'layer id:{idx:>2} {m.type:>50} output shape:{", ".join([str(x_.size()) for x_ in x if x_ is not None])}')
            # elif type(x) is dict:
            #     print(f'layer id:{idx:>2} {m.type:>50} output shape:{", ".join([str(x_.size()) for x_ in x["one2one"]])}')
            # else:
            #     if not hasattr(m, 'backbone'):
            #         print(f'layer id:{idx:>2} {m.type:>50} output shape:{x.size()}')
            
            if visualize:
                feature_visualization(x, m.type, m.i, save_dir=visualize)
            if embed and m.i in embed:
                embeddings.append(nn.functional.adaptive_avg_pool2d(x, (1, 1)).squeeze(-1).squeeze(-1))  # flatten
                if m.i == max(embed):
                    return torch.unbind(torch.cat(embeddings, 1), dim=0)
        return x
(3)修改parse_model函数

可以直接把下面的代码粘贴到对应的位置中,后续的改进中,对应的模块就不需要做出改变,有改变处,后续会另有说明

代码语言:javascript
代码运行次数:0
复制
def parse_model(d, ch, verbose=True, warehouse_manager=None):  # model_dict, input_channels(3)
    """Parse a YOLO model.yaml dictionary into a PyTorch model."""
    import ast
 
    # Args
    max_channels = float("inf")
    nc, act, scales = (d.get(x) for x in ("nc", "activation", "scales"))
    depth, width, kpt_shape = (d.get(x, 1.0) for x in ("depth_multiple", "width_multiple", "kpt_shape"))
    if scales:
        scale = d.get("scale")
        if not scale:
            scale = tuple(scales.keys())[0]
            LOGGER.warning(f"WARNING ⚠️ no model scale passed. Assuming scale='{scale}'.")
        if len(scales[scale]) == 3:
            depth, width, max_channels = scales[scale]
        elif len(scales[scale]) == 4:
            depth, width, max_channels, threshold = scales[scale]
 
    if act:
        Conv.default_act = eval(act)  # redefine default activation, i.e. Conv.default_act = nn.SiLU()
        if verbose:
            LOGGER.info(f"{colorstr('activation:')} {act}")  # print
 
    if verbose:
        LOGGER.info(f"\n{'':>3}{'from':>20}{'n':>3}{'params':>10}  {'module':<60}{'arguments':<50}")
    ch = [ch]
    layers, save, c2 = [], [], ch[-1]  # layers, savelist, ch out
    is_backbone = False
    for i, (f, n, m, args) in enumerate(d["backbone"] + d["head"]):  # from, number, module, args
        try:
            if m == 'node_mode':
                m = d[m]
                if len(args) > 0:
                    if args[0] == 'head_channel':
                        args[0] = int(d[args[0]])
            t = m
            m = getattr(torch.nn, m[3:]) if 'nn.' in m else globals()[m]  # get module
        except:
            pass
        for j, a in enumerate(args):
            if isinstance(a, str):
                with contextlib.suppress(ValueError):
                    try:
                        args[j] = locals()[a] if a in locals() else ast.literal_eval(a)
                    except:
                        args[j] = a
        n = n_ = max(round(n * depth), 1) if n > 1 else n  # depth gain
        if m in {
            Classify, Conv, ConvTranspose, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, Focus, BottleneckCSP, C1, C2, C2f, ELAN1, AConv, SPPELAN, C2fAttn, C3, C3TR, 
            C3Ghost, nn.Conv2d, nn.ConvTranspose2d, DWConvTranspose2d, C3x, RepC3, PSA, SCDown, C2fCIB, C2f_Faster, C2f_ODConv,
            C2f_Faster_EMA, C2f_DBB, GSConv, GSConvns, VoVGSCSP, VoVGSCSPns, VoVGSCSPC, C2f_CloAtt, C3_CloAtt, SCConv, C2f_SCConv, C3_SCConv, C2f_ScConv, C3_ScConv,
            C3_EMSC, C3_EMSCP, C2f_EMSC, C2f_EMSCP, RCSOSA, KWConv, C2f_KW, C3_KW, DySnakeConv, C2f_DySnakeConv, C3_DySnakeConv,
            DCNv2, C3_DCNv2, C2f_DCNv2, DCNV3_YOLO, C3_DCNv3, C2f_DCNv3, C3_Faster, C3_Faster_EMA, C3_ODConv,
            OREPA, OREPA_LargeConv, RepVGGBlock_OREPA, C3_OREPA, C2f_OREPA, C3_DBB, C3_REPVGGOREPA, C2f_REPVGGOREPA,
            C3_DCNv2_Dynamic, C2f_DCNv2_Dynamic, C3_ContextGuided, C2f_ContextGuided, C3_MSBlock, C2f_MSBlock,
            C3_DLKA, C2f_DLKA, CSPStage, SPDConv, RepBlock, C3_EMBC, C2f_EMBC, SPPF_LSKA, C3_DAttention, C2f_DAttention,
            C3_Parc, C2f_Parc, C3_DWR, C2f_DWR, RFAConv, RFCAConv, RFCBAMConv, C3_RFAConv, C2f_RFAConv,
            C3_RFCBAMConv, C2f_RFCBAMConv, C3_RFCAConv, C2f_RFCAConv, C3_FocusedLinearAttention, C2f_FocusedLinearAttention,
            C3_AKConv, C2f_AKConv, AKConv, C3_MLCA, C2f_MLCA,
            C3_UniRepLKNetBlock, C2f_UniRepLKNetBlock, C3_DRB, C2f_DRB, C3_DWR_DRB, C2f_DWR_DRB, CSP_EDLAN,
            C3_AggregatedAtt, C2f_AggregatedAtt, DCNV4_YOLO, C3_DCNv4, C2f_DCNv4, HWD, SEAM,
            C3_SWC, C2f_SWC, C3_iRMB, C2f_iRMB, C3_iRMB_Cascaded, C2f_iRMB_Cascaded, C3_iRMB_DRB, C2f_iRMB_DRB, C3_iRMB_SWC, C2f_iRMB_SWC,
            C3_VSS, C2f_VSS, C3_LVMB, C2f_LVMB, RepNCSPELAN4, DBBNCSPELAN4, OREPANCSPELAN4, DRBNCSPELAN4, ADown, V7DownSampling,
            C3_DynamicConv, C2f_DynamicConv, C3_GhostDynamicConv, C2f_GhostDynamicConv, C3_RVB, C2f_RVB, C3_RVB_SE, C2f_RVB_SE, C3_RVB_EMA, C2f_RVB_EMA, DGCST,
            C3_RetBlock, C2f_RetBlock, C3_PKIModule, C2f_PKIModule, RepNCSPELAN4_CAA, C3_FADC, C2f_FADC, C3_PPA, C2f_PPA, SRFD, DRFD, RGCSPELAN,
            C3_Faster_CGLU, C2f_Faster_CGLU, C3_Star, C2f_Star, C3_Star_CAA, C2f_Star_CAA, C3_KAN, C2f_KAN, C3_EIEM, C2f_EIEM, C3_DEConv, C2f_DEConv,
            C3_SMPCGLU, C2f_SMPCGLU, C3_Heat, C2f_Heat, CSP_PTB, SimpleStem, VisionClueMerge, VSSBlock_YOLO, XSSBlock, GLSA, C2f_WTConv, WTConv2d, FeaturePyramidSharedConv,
            C2f_FMB, LDConv, C2f_gConv, C2f_WDBB, C2f_DeepDBB, C2f_AdditiveBlock, C2f_AdditiveBlock_CGLU, CSP_MSCB, C2f_MSMHSA_CGLU, CSP_PMSFA, C2f_MogaBlock,
            C2f_SHSA, C2f_SHSA_CGLU, C2f_SMAFB, C2f_SMAFB_CGLU, C2f_IdentityFormer, C2f_RandomMixing, C2f_PoolingFormer, C2f_ConvFormer, C2f_CaFormer,
            C2f_IdentityFormerCGLU, C2f_RandomMixingCGLU, C2f_PoolingFormerCGLU, C2f_ConvFormerCGLU, C2f_CaFormerCGLU, CSP_MutilScaleEdgeInformationEnhance, C2f_FFCM,
            C2f_SFHF, CSP_FreqSpatial, C2f_MSM, C2f_RAB, C2f_HDRAB, C2f_LFE, CSP_MutilScaleEdgeInformationSelect, C2f_SFA, C2f_CTA, C2f_CAMixer, MANet,
            MANet_FasterBlock, MANet_FasterCGLU, MANet_Star, C2f_HFERB, C2f_DTAB, C2f_ETB, C2f_JDPM, C2f_AP, PSConv, C2f_Kat, C2f_Faster_KAN, C2f_Strip, C2f_StripCGLU
        }:
            if args[0] == 'head_channel':
                args[0] = d[args[0]]
            c1, c2 = ch[f], args[0]
            if c2 != nc:  # if c2 not equal to number of classes (i.e. for Classify() output)
                c2 = make_divisible(min(c2, max_channels) * width, 8)
            if m is C2fAttn:
                args[1] = make_divisible(min(args[1], max_channels // 2) * width, 8)  # embed channels
                args[2] = int(
                    max(round(min(args[2], max_channels // 2 // 32)) * width, 1) if args[2] > 1 else args[2]
                )  # num heads
 
            args = [c1, c2, *args[1:]]
            if m in (KWConv, C2f_KW, C3_KW):
                args.insert(2, f'layer{i}')
                args.insert(2, warehouse_manager)
            if m in (DySnakeConv,):
                c2 = c2 * 3
            if m in (RepNCSPELAN4, DBBNCSPELAN4, OREPANCSPELAN4, DRBNCSPELAN4, RepNCSPELAN4_CAA):
                args[2] = make_divisible(min(args[2], max_channels) * width, 8)
                args[3] = make_divisible(min(args[3], max_channels) * width, 8)
            if m in {
                     BottleneckCSP, C1, C2, C2f, C2fAttn, C3, C3TR, C3Ghost, C3x, RepC3, C2fCIB, C2f_Faster, C2f_ODConv, C2f_Faster_EMA, C2f_DBB,
                     VoVGSCSP, VoVGSCSPns, VoVGSCSPC, C2f_CloAtt, C3_CloAtt, C2f_SCConv, C3_SCConv, C2f_ScConv, C3_ScConv,
                     C3_EMSC, C3_EMSCP, C2f_EMSC, C2f_EMSCP, RCSOSA, C2f_KW, C3_KW, C2f_DySnakeConv, C3_DySnakeConv,
                     C3_DCNv2, C2f_DCNv2, C3_DCNv3, C2f_DCNv3, C3_Faster, C3_Faster_EMA, C3_ODConv, C3_OREPA, C2f_OREPA, C3_DBB,
                     C3_REPVGGOREPA, C2f_REPVGGOREPA, C3_DCNv2_Dynamic, C2f_DCNv2_Dynamic, C3_ContextGuided, C2f_ContextGuided, 
                     C3_MSBlock, C2f_MSBlock, C3_DLKA, C2f_DLKA, CSPStage, RepBlock, C3_EMBC, C2f_EMBC, C3_DAttention, C2f_DAttention,
                     C3_Parc, C2f_Parc, C3_DWR, C2f_DWR, C3_RFAConv, C2f_RFAConv, C3_RFCBAMConv, C2f_RFCBAMConv, C3_RFCAConv, C2f_RFCAConv,
                     C3_FocusedLinearAttention, C2f_FocusedLinearAttention, C3_AKConv, C2f_AKConv, C3_MLCA, C2f_MLCA,
                     C3_UniRepLKNetBlock, C2f_UniRepLKNetBlock, C3_DRB, C2f_DRB, C3_DWR_DRB, C2f_DWR_DRB, CSP_EDLAN,
                     C3_AggregatedAtt, C2f_AggregatedAtt, C3_DCNv4, C2f_DCNv4, C3_SWC, C2f_SWC,
                     C3_iRMB, C2f_iRMB, C3_iRMB_Cascaded, C2f_iRMB_Cascaded, C3_iRMB_DRB, C2f_iRMB_DRB, C3_iRMB_SWC, C2f_iRMB_SWC,
                     C3_VSS, C2f_VSS, C3_LVMB, C2f_LVMB, C3_DynamicConv, C2f_DynamicConv, C3_GhostDynamicConv, C2f_GhostDynamicConv,
                     C3_RVB, C2f_RVB, C3_RVB_SE, C2f_RVB_SE, C3_RVB_EMA, C2f_RVB_EMA, C3_RetBlock, C2f_RetBlock, C3_PKIModule, C2f_PKIModule,
                     C3_FADC, C2f_FADC, C3_PPA, C2f_PPA, RGCSPELAN, C3_Faster_CGLU, C2f_Faster_CGLU, C3_Star, C2f_Star, C3_Star_CAA, C2f_Star_CAA,
                     C3_KAN, C2f_KAN, C3_EIEM, C2f_EIEM, C3_DEConv, C2f_DEConv, C3_SMPCGLU, C2f_SMPCGLU, C3_Heat, C2f_Heat, CSP_PTB, XSSBlock, C2f_WTConv,
                     C2f_FMB, C2f_gConv, C2f_WDBB, C2f_DeepDBB, C2f_AdditiveBlock, C2f_AdditiveBlock_CGLU, CSP_MSCB, C2f_MSMHSA_CGLU, CSP_PMSFA, C2f_MogaBlock,
                     C2f_SHSA, C2f_SHSA_CGLU, C2f_SMAFB, C2f_SMAFB_CGLU, C2f_IdentityFormer, C2f_RandomMixing, C2f_PoolingFormer, C2f_ConvFormer, C2f_CaFormer,
                     C2f_IdentityFormerCGLU, C2f_RandomMixingCGLU, C2f_PoolingFormerCGLU, C2f_ConvFormerCGLU, C2f_CaFormerCGLU, CSP_MutilScaleEdgeInformationEnhance, C2f_FFCM,
                     C2f_SFHF, CSP_FreqSpatial, C2f_MSM, C2f_RAB, C2f_HDRAB, C2f_LFE, CSP_MutilScaleEdgeInformationSelect, C2f_SFA, C2f_CTA, C2f_CAMixer, MANet,
                     MANet_FasterBlock, MANet_FasterCGLU, MANet_Star, C2f_HFERB, C2f_DTAB, C2f_ETB, C2f_JDPM, C2f_AP, C2f_Kat, C2f_Faster_KAN, C2f_Strip, C2f_StripCGLU
                     }:
                args.insert(2, n)  # number of repeats
                n = 1
        elif m in {AIFI, AIFI_RepBN}:
            args = [ch[f], *args]
            c2 = args[0]
        elif m in (HGStem, HGBlock, Ghost_HGBlock, Rep_HGBlock, Dynamic_HGBlock, EIEStem):
            c1, cm, c2 = ch[f], args[0], args[1]
            if c2 != nc:  # if c2 not equal to number of classes (i.e. for Classify() output)
                c2 = make_divisible(min(c2, max_channels) * width, 8)
                cm = make_divisible(min(cm, max_channels) * width, 8)
            args = [c1, cm, c2, *args[2:]]
            if m in (HGBlock, Ghost_HGBlock, Rep_HGBlock, Dynamic_HGBlock):
                args.insert(4, n)  # number of repeats
                n = 1
        elif m is ResNetLayer:
            c2 = args[1] if args[3] else args[1] * 4
        elif m is nn.BatchNorm2d:
            args = [ch[f]]
        elif m is Concat:
            c2 = sum(ch[x] for x in f)
        elif m in ((WorldDetect, ImagePoolingAttn) + DETECT_CLASS + V10_DETECT_CLASS + SEGMENT_CLASS + POSE_CLASS + OBB_CLASS):
            args.append([ch[x] for x in f])
            if m in SEGMENT_CLASS:
                args[2] = make_divisible(min(args[2], max_channels) * width, 8)
                if m in (Segment_LSCD, Segment_TADDH, Segment_LSCSBD, Segment_LSDECD, Segment_RSCD):
                    args[3] = make_divisible(min(args[3], max_channels) * width, 8)
            if m in (Detect_LSCD, Detect_TADDH, Detect_LSCSBD, Detect_LSDECD, Detect_RSCD, v10Detect_LSCD, v10Detect_TADDH, v10Detect_RSCD, v10Detect_LSDECD):
                args[1] = make_divisible(min(args[1], max_channels) * width, 8)
            if m in (Pose_LSCD, Pose_TADDH, Pose_LSCSBD, Pose_LSDECD, Pose_RSCD, OBB_LSCD, OBB_TADDH, OBB_LSCSBD, OBB_LSDECD, OBB_RSCD):
                args[2] = make_divisible(min(args[2], max_channels) * width, 8)
        elif m is RTDETRDecoder:  # special case, channels arg must be passed in index 1
            args.insert(1, [ch[x] for x in f])
        elif m is Fusion:
            args[0] = d[args[0]]
            c1, c2 = [ch[x] for x in f], (sum([ch[x] for x in f]) if args[0] == 'concat' else ch[f[0]])
            args = [c1, args[0]]
        elif m is CBLinear:
            c2 = make_divisible(min(args[0][-1], max_channels) * width, 8)
            c1 = ch[f]
            args = [c1, [make_divisible(min(c2_, max_channels) * width, 8) for c2_ in args[0]], *args[1:]]
        elif m is CBFuse:
            c2 = ch[f[-1]]
        elif isinstance(m, str):
            t = m
            if len(args) == 2:        
                m = timm.create_model(m, pretrained=args[0], pretrained_cfg_overlay={'file':args[1]}, features_only=True)
            elif len(args) == 1:
                m = timm.create_model(m, pretrained=args[0], features_only=True)
            c2 = m.feature_info.channels()
        elif m in {convnextv2_atto, convnextv2_femto, convnextv2_pico, convnextv2_nano, convnextv2_tiny, convnextv2_base, convnextv2_large, convnextv2_huge,
                   fasternet_t0, fasternet_t1, fasternet_t2, fasternet_s, fasternet_m, fasternet_l,
                   EfficientViT_M0, EfficientViT_M1, EfficientViT_M2, EfficientViT_M3, EfficientViT_M4, EfficientViT_M5,
                   efficientformerv2_s0, efficientformerv2_s1, efficientformerv2_s2, efficientformerv2_l,
                   vanillanet_5, vanillanet_6, vanillanet_7, vanillanet_8, vanillanet_9, vanillanet_10, vanillanet_11, vanillanet_12, vanillanet_13, vanillanet_13_x1_5, vanillanet_13_x1_5_ada_pool,
                   RevCol,
                   lsknet_t, lsknet_s,
                   SwinTransformer_Tiny,
                   repvit_m0_9, repvit_m1_0, repvit_m1_1, repvit_m1_5, repvit_m2_3,
                   CSWin_tiny, CSWin_small, CSWin_base, CSWin_large,
                   unireplknet_a, unireplknet_f, unireplknet_p, unireplknet_n, unireplknet_t, unireplknet_s, unireplknet_b, unireplknet_l, unireplknet_xl,
                   transnext_micro, transnext_tiny, transnext_small, transnext_base,
                   RMT_T, RMT_S, RMT_B, RMT_L,
                   PKINET_T, PKINET_S, PKINET_B,
                   MobileNetV4ConvSmall, MobileNetV4ConvMedium, MobileNetV4ConvLarge, MobileNetV4HybridMedium, MobileNetV4HybridLarge,
                   starnet_s050, starnet_s100, starnet_s150, starnet_s1, starnet_s2, starnet_s3, starnet_s4
                   }:
            if m is RevCol:
                args[1] = [make_divisible(min(k, max_channels) * width, 8) for k in args[1]]
                args[2] = [max(round(k * depth), 1) for k in args[2]]
            m = m(*args)
            c2 = m.channel
        elif m in {EMA, SpatialAttention, BiLevelRoutingAttention, BiLevelRoutingAttention_nchw,
                   TripletAttention, CoordAtt, CBAM, BAMBlock, LSKBlock, ScConv, LAWDS, EMSConv, EMSConvP,
                   SEAttention, CPCA, Partial_conv3, FocalModulation, EfficientAttention, MPCA, deformable_LKA,
                   EffectiveSEModule, LSKA, SegNext_Attention, DAttention, MLCA, TransNeXt_AggregatedAttention,
                   FocusedLinearAttention, LocalWindowAttention, ChannelAttention_HSFPN, ELA_HSFPN, CA_HSFPN, CAA_HSFPN, 
                   DySample, CARAFE, CAA, ELA, CAFM, AFGCAttention, EUCB, ContrastDrivenFeatureAggregation, FSA}:
            c2 = ch[f]
            args = [c2, *args]
            # print(args)
        elif m in {SimAM, SpatialGroupEnhance}:
            c2 = ch[f]
        elif m is ContextGuidedBlock_Down:
            c2 = ch[f] * 2
            args = [ch[f], c2, *args]
        elif m is BiFusion:
            c1 = [ch[x] for x in f]
            c2 = make_divisible(min(args[0], max_channels) * width, 8)
            args = [c1, c2]
        # --------------GOLD-YOLO--------------
        elif m in {SimFusion_4in, AdvPoolFusion}:
            c2 = sum(ch[x] for x in f)
        elif m is SimFusion_3in:
            c2 = args[0]
            if c2 != nc:  # if c2 not equal to number of classes (i.e. for Classify() output)
                c2 = make_divisible(min(c2, max_channels) * width, 8)
            args = [[ch[f_] for f_ in f], c2]
        elif m is IFM:
            c1 = ch[f]
            c2 = sum(args[0])
            args = [c1, *args]
        elif m is InjectionMultiSum_Auto_pool:
            c1 = ch[f[0]]
            c2 = args[0]
            args = [c1, *args]
        elif m is PyramidPoolAgg:
            c2 = args[0]
            args = [sum([ch[f_] for f_ in f]), *args]
        elif m is TopBasicLayer:
            c2 = sum(args[1])
        # --------------GOLD-YOLO--------------
        # --------------ASF--------------
        elif m is Zoom_cat:
            c2 = sum(ch[x] for x in f)
        elif m is Add:
            c2 = ch[f[-1]]
        elif m in {ScalSeq, DynamicScalSeq}:
            c1 = [ch[x] for x in f]
            c2 = make_divisible(args[0] * width, 8)
            args = [c1, c2]
        elif m is asf_attention_model:
            args = [ch[f[-1]]]
        # --------------ASF--------------
        elif m is SDI:
            args = [[ch[x] for x in f]]
        elif m is Multiply:
            c2 = ch[f[0]]
        elif m is FocusFeature:
            c1 = [ch[x] for x in f]
            c2 = int(c1[1] * 0.5 * 3)
            args = [c1, *args]
        elif m is DASI:
            c1 = [ch[x] for x in f]
            args = [c1, c2]
        elif m is CSMHSA:
            c1 = [ch[x] for x in f]
            c2 = ch[f[-1]]
            args = [c1, c2]
        elif m is CFC_CRB:
            c1 = ch[f]
            c2 = c1 // 2
            args = [c1, *args]
        elif m is SFC_G2:
            c1 = [ch[x] for x in f]
            c2 = c1[0]
            args = [c1]
        elif m in {CGAFusion, CAFMFusion, SDFM, PSFM}:
            c2 = ch[f[1]]
            args = [c2, *args]
        elif m in {ContextGuideFusionModule}:
            c1 = [ch[x] for x in f]
            c2 = 2 * c1[1]
            args = [c1]
        # elif m in {PSA}:
        #     c2 = ch[f]
        #     args = [c2, *args]
        elif m in {SBA}:
            c1 = [ch[x] for x in f]
            c2 = c1[-1]
            args = [c1, c2]
        elif m in {WaveletPool}:
            c2 = ch[f] * 4
        elif m in {WaveletUnPool}:
            c2 = ch[f] // 4
        elif m in {CSPOmniKernel}:
            c2 = ch[f]
            args = [c2]
        elif m in {ChannelTransformer, PyramidContextExtraction}:
            c1 = [ch[x] for x in f]
            c2 = c1
            args = [c1]
        elif m in {RCM}:
            c2 = ch[f]
            args = [c2, *args]
        elif m in {DynamicInterpolationFusion}:
            c2 = ch[f[0]]
            args = [[ch[x] for x in f]]
        elif m in {FuseBlockMulti}:
            c2 = ch[f[0]]
            args = [c2]
        elif m in {CrossLayerChannelAttention, CrossLayerSpatialAttention}:
            c2 = [ch[x] for x in f]
            args = [c2[0], *args]
        elif m in {FreqFusion}:
            c2 = ch[f[0]]
            args = [[ch[x] for x in f], *args]
        elif m in {DynamicAlignFusion}:
            c2 = args[0]
            args = [[ch[x] for x in f], c2]
        elif m in {ConvEdgeFusion}:
            c2 = make_divisible(min(args[0], max_channels) * width, 8)
            args = [[ch[x] for x in f], c2]
        elif m in {MutilScaleEdgeInfoGenetator}:
            c1 = ch[f]
            c2 = [make_divisible(min(i, max_channels) * width, 8) for i in args[0]]
            args = [c1, c2]
        elif m in {MultiScaleGatedAttn}:
            c1 = [ch[x] for x in f]
            c2 = min(c1)
            args = [c1]
        elif m in {WFU, MultiScalePCA, MultiScalePCA_Down}:
            c1 = [ch[x] for x in f]
            c2 = c1[0]
            args = [c1]
        elif m in {GetIndexOutput}:
            c2 = ch[f][args[0]]
        elif m is HyperComputeModule:
            c1, c2 = ch[f], args[0]
            c2 = make_divisible(min(c2, max_channels) * width, 8)
            args = [c1, c2, threshold]
        else:
            c2 = ch[f]
 
        if isinstance(c2, list) and m not in {ChannelTransformer, PyramidContextExtraction, CrossLayerChannelAttention, CrossLayerSpatialAttention, MutilScaleEdgeInfoGenetator}:
            is_backbone = True
            m_ = m
            m_.backbone = True
        else:
            m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # module
            t = str(m)[8:-2].replace('__main__.', '')  # module type
        m.np = sum(x.numel() for x in m_.parameters())  # number params
        m_.i, m_.f, m_.type = i + 4 if is_backbone else i, f, t  # attach index, 'from' index, type
        if verbose:
            LOGGER.info(f"{i:>3}{str(f):>20}{n_:>3}{m.np:10.0f}  {t:<60}{str(args):<50}")  # print
        save.extend(x % (i + 4 if is_backbone else i) for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelist
        layers.append(m_)
        if i == 0:
            ch = []
        if isinstance(c2, list) and m not in {ChannelTransformer, PyramidContextExtraction, CrossLayerChannelAttention, CrossLayerSpatialAttention, MutilScaleEdgeInfoGenetator}:
            ch.extend(c2)
            for _ in range(5 - len(ch)):
                ch.insert(0, 0)
        else:
            ch.append(c2)
    return nn.Sequential(*layers), sorted(save)

第③步:yolov8.yaml文件修改

在下述文件夹中创立yolov8-convnextv2.yaml

代码语言:javascript
代码运行次数:0
复制
# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs

# 0-P1/2
# 1-P2/4
# 2-P3/8
# 3-P4/16
# 4-P5/32

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, convnextv2_atto, []]  # 4
  - [-1, 1, SPPF, [1024, 5]]  # 5

# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 6
  - [[-1, 3], 1, Concat, [1]]  # 7 cat backbone P4
  - [-1, 3, C2f, [512]]  # 8

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 9
  - [[-1, 2], 1, Concat, [1]]  # 10 cat backbone P3
  - [-1, 3, C2f, [256]]  # 11 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]] # 12
  - [[-1, 8], 1, Concat, [1]]  # 13 cat head P4
  - [-1, 3, C2f, [512]]  # 14 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]] # 15
  - [[-1, 5], 1, Concat, [1]]  # 16 cat head P5
  - [-1, 3, C2f, [1024]]  # 17 (P5/32-large)

  - [[11, 14, 17], 1, Detect, [nc]]  # Detect(P3, P4, P5)

第④步:验证是否加入成功

将train.py中的配置文件进行修改,并运行

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2025-02-25,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 💯一、ConvNeXt V2介绍
    • 1. 简介
    • 2. ConvNeXt V2架构
      • 2.1 全卷积掩码自编码器(FCMAE)
      • 2.2 全局响应归一化(GRN)
    • 3. 实验结果
      • 3.1 ImageNet分类
      • 3.2 COCO目标检测和分割
      • 3.3 ADE20K语义分割
    • 4. 关键结论
  • 💯二、具体添加方法
    • 第①步:创建convnextv2.py
    • 第②步:修改task.py
      • (1)引入创建的convnextv2文件
      • (2)修改_predict_once函数
      • (3)修改parse_model函数
    • 第③步:yolov8.yaml文件修改
    • 第④步:验证是否加入成功
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档