腾讯云智能体开发平台产品官网:
LKE(Large Model Knowledge Engine) 是腾讯云推出的面向企业级应用的大模型知识服务引擎,旨在通过整合多模态数据、行业知识库与大模型能力,提供智能问答、知识检索、决策辅助等场景化解决方案。
对比维度 | 接入 DeepSeek 之前 | 接入 DeepSeek 之后 |
---|---|---|
时效性 | 依赖预训练数据,难以获取最新信息,对时效性问题的回答可能滞后 | 支持联网搜索,可实时获取互联网最新资讯,突破预训练数据的时间限制,能提供时效精准的智能问答服务,如对 “春节申遗是否成功” 可及时给出正确答案 |
准确性 | 回答主要基于自身知识库和算法,在处理复杂问题或需要多源知识融合时,准确性可能受限 | 结合知识库和 RAG 能力,能更好地融合企业专属知识和外部知识,提升回答的准确性和全面性 |
应用搭建便捷性 | 需要更多的开发工作和技术能力来搭建复杂应用,开发周期相对较长 | 内置 DeepSeek - R1 和 V3,用户可根据需求选择,通过拖拉拽方式就能分钟级快捷搭建智能客服、在线搜索、AI 写作助手等应用,开发过程稳定高效 |
企业服务针对性 | 对企业私域知识的运用和结合程度有限,可能无法很好地满足企业个性化需求 | 企业用户上传私域知识后,借助知识引擎的 RAG 能力,DeepSeek 模型能更好地理解和运用企业专属知识,为企业提供更精准、个性化的服务 |
数据处理能力 | 有一定的数据处理能力,但对于复杂多模态数据等处理存在一定局限 | 综合运用 OCR 技术、多模态处理能力以及自研的长文本 embedding 技术,能更好地处理知识处理与答案生成全链路中的复杂问题 |
稳定性 | 整体较为稳定,但面对大模型相关的一些复杂需求和高并发等情况可能有挑战 | 腾讯云凭借强大的公有云服务,为 DeepSeek 模型的运行提供更稳定的环境,确保服务的可靠性和稳定性 |
安全保障 | 有基本的安全保障措施 | 腾讯云提供包括腾讯云智能体开发平台在内的全方位安全保障,保护企业数据和应用安全,降低企业应用大模型的风险 |
我们在腾讯云智能体开发平台LKE 知识应用搭建 知识应用平台主页点击==产品体验==。
如果你是第一次体验的话,那么就会出现下面开通体验成功的样子
import torch
class FGM:
def __init__(self, model):
self.model = model
self.backup = {}
def attack(self, epsilon=0.5, emb_name='embedding'):
"""添加对抗扰动"""
for name, param in self.model.named_parameters():
if param.requires_grad and emb_name in name:
self.backup[name] = param.data.clone()
norm = torch.norm(param.grad)
if norm != 0 and not torch.isnan(norm):
r_at = epsilon * param.grad / norm
param.data.add_(r_at)
def restore(self, emb_name='embedding'):
"""恢复参数"""
for name, param in self.model.named_parameters():
if param.requires_grad and emb_name in name:
param.data = self.backup[name]
self.backup = {}
# 使用示例
model = YourModel() # 请替换为你的模型
fgm = FGM(model)
for batch_input, batch_label in dataloader:
# 正常训练
loss = model(batch_input, batch_label)
loss.backward() # 反向传播梯度
# 生成对抗样本
fgm.attack() # 在embedding层添加扰动
loss_adv = model(batch_input, batch_label)
loss_adv.backward() # 计算对抗样本的梯度
fgm.restore() # 恢复参数
# 更新模型参数
optimizer.step()
optimizer.zero_grad()
可以发现代码十分详细,该代码是实现了一个针对神经网络模型的对抗攻击,使用了“FGM(Fast Gradient Method)”来生成对抗样本,通过扰动神经网络中的嵌入层(embedding)。在每个训练步骤中,它会在嵌入层的权重上添加扰动,然后使用对抗样本计算损失并进行反向传播,最后恢复原始的模型参数。
并且我们这里还能进行本地文件的分析,我们这里直接上传一个文件让DeepSeek进行分析文件中的内容,可以见得他可以将我们文件中的每个点都进行划分,用清晰的语言表述出来,这一点的话非常适合经常写论文的同学,在我们平常的学习生活中我们也可以试试投机取巧,将论文要求的文件投喂给我们的DeepSeek让它帮我们进行详细的分析写论文的思路以及提供给你一些有效的材料
但是我们在我们的腾讯云智能体开发平台平台这么调用deepseek的话感觉会显得很单调,那么我们就可以利用我们引擎平台创建以及的deepseek应用程序,设置自己的promopt,那么接下来就是具体的步骤了
我们在体验的界面点击右上角的+创建为我的应用
在这里我们可以进行对deepseek的角色设定操作
#角色名称: 搞怪教授
#风格特点:
#能力限制:
我们还可以设置我们的独一无二的欢迎语
并且我们应用在使用的时候还能调用我们知识库中的内容,知识库中的内容是我们提前设置好的,在我们提出问题的时候,系统会进行调用知识库中的内容进行回答
点击==新建==和==手动录入==
在我们工作流的界面我们可以根据自己的需求调整输入输出的变量 ,
开始
询问服务类型(借书,还书)
判断服务类型(如果借书那么,如果还书那么,否则)
询问借书书名和时长(获取书名和借阅时间)
借书时长归一化(把各种时长的描述统一为多少天)
查询图书库存(通过接口查询返回结果)
判断是否能借书(根据上一步返回结果判断)
询问借书用户账号(获取账号信息)
借书操作(根据书名和用户信息完成借书操作)
判断是否借书成功(如果,那么,否则)
借书成功回复(输出相关信息)
下面就是我和我的应用之间的对话了
你们如果想创建一个自己的应用的话,可以来这里试试,创建好之后并且可以通过API调用来体验你自己的应用
我这里调用API的使用地点就是影刀RPA中调用,来帮助我完成学习中比较吃力的任务
并且咱们腾讯云的deepseek的api调用的反应以及稳定性都是强于deepseek官网的
腾讯云DeepSeek API 价格最新计费说明
2025年2月26日0时起,腾讯云DeepSeek API价格最新计费信息:
DeepSeek-R1 模型 | 输入:0.004元/千token | 输出:0.016元/千token
DeepSeek-V3 模型 | 输入:0.002元/千token | 输出:0.008元/千token
腾讯云DeepSeek API调用方式接口地址:https://cloud.tencent.com/document/product/1772/115963
官网时不时出现卡顿的现象,想体验满血deepseek就来腾讯云吧
想要使用的话就赶紧来吧
腾讯云智能体开发平台产品官网: 腾讯云智能体开发平台LKE 知识应用搭建 知识应用平台
腾讯云智能体开发平台原子能力接口文档: 腾讯云智能体开发平台-文档中心
腾讯云智能体开发平台×DeepSeek应用创建指南: 腾讯云智能体开发平台 DeepSeek应用创建指南
腾讯云DeepSeek API接入文档: 知识引擎原子能力 对话-API 文档
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。
扫码关注腾讯云开发者
领取腾讯云代金券
Copyright © 2013 - 2025 Tencent Cloud. All Rights Reserved. 腾讯云 版权所有
深圳市腾讯计算机系统有限公司 ICP备案/许可证号:粤B2-20090059 深公网安备号 44030502008569
腾讯云计算(北京)有限责任公司 京ICP证150476号 | 京ICP备11018762号 | 京公网安备号11010802020287
Copyright © 2013 - 2025 Tencent Cloud.
All Rights Reserved. 腾讯云 版权所有