暂无搜索历史
序列标注在SLU语义理解具有重要地位,主要用于语义槽的提取,便于机器理解用户query的语义。常见的序列标注方式有Jordan-RNN、BiLS...
Huber Loss主要用于解决回归问题中,存在奇点数据带偏模型训练的问题;Focal Loss主要解决分类问题中类别不均衡导致的模型训偏问题。
小冰设计相关的论文多年来一直没有对外公布,得益于近几年小冰的快速发展,在对话领域形成技术壁垒。与此同时拥有大量的用户和数据,我们才有幸看到如下的...
Tensorflow在深度学习模型研究中起到了很大的促进作用,灵活的框架免去了研究人员、开发者大量的自动求导代码工作。本文总结一下常用的模型代码和工程化需要的代...
迁移学习近年来在图形领域中得到了快速的发展,主要在于某些特定的领域不具备足够的数据,不能让深度模型学习的很好,需要从其它领域训练好的模型迁移过来,...
在深度学习中,迁移学习经常被使用,在大数据集上预训练的模型迁移到特定的任务,往往需要保持模型参数不变,而微调与任务相关的模型层。本文主要介绍,使用tensorf...
分类时,由于训练集合中各样本数量不均衡,导致模型训偏在测试集合上的泛化性不好。解决样本不均衡的方法主要包括两类:(1)数据层面,修改各类别的分布;(2)分类器层...
Pointer Network是seq2seq模型的一种变型。seq2seq模型是一种编码-解码框架的端到端生成模型,已经在机器翻译、对话生成、语法...
1. 去除标点 2. 圆角转半角 3. 判断是否为unicode的中文 4. 判断是否为英文unicode编码 5. 判断是否为数字的unicode编码 6. ...
语法改错是一个大家比较陌生的领域,大致可以认为对英文进行语法改错。给定一句带有语法错误的话,AI对其进行修正得到正确的语法表示。最近微软亚洲研究...
Beam Search并不是很陌生的算法,它和深度优先算法、广度优先算法一样都曾被使用于树结构的搜索。本文重提Beam Search主要是因为在智能对话生成式模...
对话系统 人机对话系统分为任务型对话和非任务型对话系统。对于任务型对话系统的评价,一般采用任务完成的程度来进行评估,例如“导购”机器人,主要看用户是否点击“推荐...
对于对话系统的回复质量评价,一直没有很好的方法。之前的文章写过一些评价指标,例如BLEU、PPL、Distinct、ROUGE等。这些指标给出的评估结果与人工评...
微信小游戏腾空出现,加上腾讯近年来对游戏的发力,这个小小的功能,逐渐触及微信生态。小程序推出的[跳一跳]小游戏,更助力了游戏和小程序在微信中的强势发展。本文为你...
本文简述一下搜索引擎的搭建过程,具体描述的搜索是文本类型的搜索,而非网页搜索。对于网页搜索的排序,需要有很多考虑,例如pagerank算法,会优先考虑web站点...
由于AI技术的发展,对话机器人也得到了广泛关注和应用,例如Siri、Alexa等。关于目前的人机对话可以分为两种:任务型对话(辅助购物、导航、商场指示、天气询问...
机器阅读理解 斯坦福有个很重要的比赛,就是让机器完成阅读理解题目,即给定一篇文章,让机器理解文章含义进行题目回复。每年这一比赛都是国际性的,引来了业界、学术界的...
对于词语的表示,最开始采用one-hot编码,用于判断文本中是否具有该词语;后来发展使用Bag-of-Words,使用词频信息对词语进行表示;再后来使用TF-I...
暂未填写公司和职称
暂未填写个人网址
暂未填写所在城市