Loading [MathJax]/jax/output/CommonHTML/config.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >java官方编译器_JAVA 编译器

java官方编译器_JAVA 编译器

作者头像
全栈程序员站长
发布于 2022-09-14 02:13:37
发布于 2022-09-14 02:13:37
2.4K0
举报

大家好,又见面了,我是你们的朋友全栈君。

javac做了些什么?

说白了,javac就是一个编译器;编译器就是把一种语言规矩转换成另一种语言规矩,也就是将对人友好的语言转换成对机器友好的语言。因此,javac是把Java源代码编译成Java字节码,即JVM可以识别的二进制;表面上就是将.java文件转成.class文件。

javac做了些什么?

主要由4个模块组成。

词法剖析器:识别Java中的if、else、for、while等关键字及其语句的合法性,构成符合标准的Token流。

语法剖析器:对构成的Token流进行语法剖析,检查它们构成的组合是否符合Java语法标准,构成抽象的语法树。

语义剖析器:将foreach、注解等杂乱的语法转换成最简略的语法,构成注解往后的语法树。

字节码生成器:将注解往后的语法树翻译器字节码。

在之前的面试解说中我们经剖析了由常量表达式计算出的字符串(字面量+字面量),为 什么并不会发生多个对象?

因为javac在编译期间,已经对这些字符串进行了合并操作。

JIT做了些什么

JIT 是 just in time 的缩写, 也就是即时编译编译器。使用即时编译器技术,能够加速 Java 程序的执行速度。下面,就对该编译器技术做个简单的讲解。

首先,我们大家都知道,通常通过 javac 将程序源代码编译,转换成 java 字节码,JVM 通过解释字节码将其翻译成对应的机器指令,逐条读入,逐条解释翻译。很显然,经过解释执行,其执行速度必然会比可执行的二进制字节码程序慢很多。为了提高执行速度,引入了 JIT 技术。

在运行时 JIT 会把翻译过的机器码保存起来,以备下次使用,因此从理论上来说,采用该 JIT 技术可以接近以前纯编译技术。下面我们看看,JIT 的工作过程。

image.png

初级调优:客户模式或服务器模式

JIT 编译器在运行程序时有两种编译模式可以选择,并且其会在运行时决定使用哪一种以达到最优性能。这两种编译模式的命名源自于命令行参数(eg: -client 或者 -server)。JVM Server 模式与 client 模式启动,最主要的差别在于:-server 模式启动时,速度较慢,但是一旦运行起来后,性能将会有很大的提升。原因是:当虚拟机运行在-client 模式的时候,使用的是一个代号为 C1 的轻量级编译器,而-server 模式启动的虚拟机采用相对重量级代号为 C2 的编译器。C2 比 C1 编译器编译的相对彻底,服务起来之后,性能更高。

通过 java -version 命令行可以直接查看当前系统使用的是 client 还是 server 模式。例如:

图 2. 查看编译模式

图 2. 查看编译模式

中级编译器调优

大多数情况下,优化编译器其实只是选择合适的 JVM 以及为目标主机选择合适的编译器(-cient,-server 或是-xx:+TieredCompilation)。多层编译经常是长时运行应用程序的最佳选择,短暂应用程序则选择毫秒级性能的 client 编译器。

优化代码缓存

当 JVM 编译代码时,它会将汇编指令集保存在代码缓存。代码缓存具有固定的大小,并且一旦它被填满,JVM 则不能再编译更多的代码。

我们可以很容易地看到如果代码缓存很小所具有的潜在问题。有些热点代码将会被编译,而其他的则不会被编译,这个应用程序将会以运行大量的解释代码来结束。

这是当使用 client 编译器模式或分层编译时很频繁的一个问题。当使用普通 server 编译器模式时,编译合格的类的数量将被填入代码缓存,通常只有少量的类会被编译。但是当使用 client 编译器模式时,编译合格的类的数量将会高很多。

在 Java 7 版本,分层编译默认的代码缓存大小经常是不够的,需要经常提高代码缓存大小。大型项目若使用 client 编译器模式,则也需要提高代码缓存大小。

现在并没有一个好的机制可以确定一个特定的应用到底需要多大的代码缓存。因此,当需要提高代码缓存时,这将是一种凑巧的操作,一个通常的做法是将代码缓存变成默认大小的两倍或四倍。

可以通过 –XX:ReservedCodeCacheSize=Nflag(N 就是之前提到的默认大小)来最大化代码缓存大小。代码缓存的管理类似于 JVM 中的内存管理:有一个初始大小(用-XX:InitialCodeCacheSize=N 来声明)。代码缓存的大小从初始大小开始,随着缓存被填满而逐渐扩大。代码缓存的初始大小是基于芯片架构(例如 Intel 系列机器,client 编译器模式下代码缓存大小起始于 160KB,server 编译器模式下代码缓存大小则起始于 2496KB)以及使用的编译器的。重定义代码缓存的大小并不会真正影响性能,所以设置 ReservedCodeCacheSize 的大小一般是必要的。

再者,如果 JVM 是 32 位的,那么运行过程大小不能超过 4GB。这包括了 Java 堆,JVM 自身所有的代码空间(包括其本身的库和线程栈),应用程序分配的任何的本地内存,当然还有代码缓存。

所以说代码缓存并不是无限的,很多时候需要为大型应用程序来调优(或者甚至是使用分层编译的中型应用程序)。比如 64 位机器,为代码缓存设置一个很大的值并不会对应用程序本身造成影响,应用程序并不会内存溢出,这些额外的内存预定一般都是被操作系统所接受的。

编译阈值

在 JVM 中,编译是基于两个计数器的:一个是方法被调用的次数,另一个是方法中循环被回弹执行的次数。回弹可以有效的被认为是循环被执行完成的次数,不仅因为它是循环的结尾,也可能是因为它执行到了一个分支语句,例如 continue。

当 JVM 执行一个 Java 方法,它会检查这两个计数器的总和以决定这个方法是否有资格被编译。如果有,则这个方法将排队等待编译。这种编译形式并没有一个官方的名字,但是一般被叫做标准编译。

但是如果方法里有一个很长的循环或者是一个永远都不会退出并提供了所有逻辑的程序会怎么样呢?这种情况下,JVM 需要编译循环而并不等待方法被调用。所以每执行完一次循环,分支计数器都会自增和自检。如果分支计数器计数超出其自身阈值,那么这个循环(并不是整个方法)将具有被编译资格。

这种编译叫做栈上替换(OSR),因为即使循环被编译了,这也是不够的:JVM 必须有能力当循环正在运行时,开始执行此循环已被编译的版本。换句话说,当循环的代码被编译完成,若 JVM 替换了代码(前栈),那么循环的下个迭代执行最新的被编译版本则会更加快。

标准编译是被-XX:CompileThreshold=Nflag 的值所触发。Client 编译器模式下,N 默认的值 1500,而 Server 编译器模式下,N 默认的值则是 10000。改变 CompileThreshold 标志的值将会使编译器相对正常情况下提前(或推迟)编译代码。在性能领域,改变 CompileThreshold 标志是很被推荐且流行的方法。事实上,您可能知道 Java 基准经常使用此标志(比如:对于很多 server 编译器来说,经常在经过 8000 次迭代后改变次标志)。

我们已经知道 client 编译器和 server 编译器在最终的性能上有很大的差别,很大程度上是因为编译器在编译一个特定的方法时,对于两种编译器可用的信息并不一样。降低编译阈值,尤其是对于 server 编译器,承担着不能使应用程序运行达到最佳性能的风险,但是经过测试应用程序我们也发现,将阈值从 8000 变成 10000,其实有着非常小的区别和影响。

检查编译过程

中级优化的最后一点其实并不是优化本身,而是它们并不能提高应用程序的性能。它们是 JVM(以及其他工具)的各个标志,并可以给出编译工作的可见性。它们中最重要的就是–XX:+PrintCompilation(默认状态下是 false)。

如果 PrintCompilation 被启用,每次一个方法(或循环)被编译,JVM 都会打印出刚刚编译过的相关信息。不同的 Java 版本输出形式不一样,我们这里所说的是基于 Java 7 版本的。

编译日志中大部分的行信息都是下面的形式:

清单 2. 日志形式

|

1

|

timestamp compilation_id attributes (tiered_level) method_name size depot

|

这里 timestamp 是编译完成时的时间戳,compilation_id 是一个内部的任务 ID,且通常情况下这个数字是单调递增的,但有时候对于 server 编译器(或任何增加编译阈值的时候),您可能会看到失序的编译 ID。这表明编译线程之间有些快有些慢,但请不要随意推断认为是某个编译器任务莫名其妙的非常慢。

用 jstat 命令检查编译

要想看到编译日志,则需要程序以-XX:+PrintCompilation flag 启动。如果程序启动时没有 flag,您可以通过 jstat 命令得到有限的可见性信息。

Jstat 有两个选项可以提供编译器信息。其中,-compile 选项提供总共有多少方法被编译的总结信息(下面 6006 是要被检查的程序的进程 ID):

清单 3 进程详情

|

1

2

3

|

% jstat -compiler 6006

CompiledFailedInvalid TimeFailedTypeFailedMethod

206 0 0 1.97 0

|

注意,这里也列出了编译失败的方法的个数信息,以及编译失败的最后一个方法的名称。

另一种选择,您可以使用-printcompilation 选项得到最后一个被编译的方法的编译信息。因为 jstat 命令有一个参数选项用来重复其操作,您可以观察每一次方法被编译的情况。举个例子:

Jstat 对 6006 号 ID 进程每 1000 毫秒执行一次: %jstat –printcompilation 6006 1000,具体的输出信息在此不再描述。

高级编译器调优

这一节我们将介绍编译工作剩下的细节,并且过程中我们会探讨一些额外的调优策略。调优的存在很大程度上帮助了 JVM 工程师诊断 JVM 自身的行为。如果您对编译器的工作原理很感兴趣,这一节您一定会喜欢。

编译线程

从前文中我们知道,当一个方法(或循环)拥有编译资格时,它就会排队并等待编译。这个队列是由一个或很多个后台线程组成。这也就是说编译是一个异步的过程。它允许程序在代码正在编译时被继续执行。如果一个方法被标准编译方式所编译,那么下一个方法调用则会执行已编译的方法。如果一个循环被栈上替换方式所编译,那么下一次循环迭代则会执行新编译的代码。

这些队列并不会严格的遵守先进先出原则:哪一个方法的调用计数器计数更高,哪一个就拥有优先权。所以即使当一个程序开始执行,并且有大量的代码需要编译,这个优先权顺序将帮助并保证最重要的代码被优先编译(这也是为什么编译 ID 在 PrintComilation 的输出结果中有时会失序的另一个原因)。

当使用 client 编译器时,JVM 启动一个编译线程,而 server 编译器有两个这样的线程。当分层编译生效时,JVM 会基于某些复杂方程式默认启动多个 client 和 server 线程,涉及双日志在目标平台上的 CPU 数量。如下图所示:

分层编译下 C1 和 C2 编译器线程默认数量:

图 3. C1 和 C2 编译器默认数量

图 3. C1 C2 编译器默认数量

编译器线程的数量可以通过-XX:CICompilerCount=N flag 进行调节设置。这个数量是 JVM 将要执行队列所用的线程总数。对于分层编译,三分之一的(至少一个)线程被用于执行 client 编译器队列,剩下的(也是至少一个)被用来执行 server 编译器队列。

在何时我们应该考虑调整这个值呢?如果一个程序被运行在单 CPU 机器上,那么只有一个编译线程会更好一些:因为对于某个线程来说,其对 CPU 的使用是有限的,并且在很多情况下越少的线程竞争资源会使其运行性能更高。然而,这个优势仅仅局限于初始预热阶段,之后,这些具有编译资格的方法并不会真的引起 CPU 争用。当一个股票批处理应用程序运行在单 CPU 机器上并且编译器线程被限制成只有一个,那么最初的计算过程将比一般情况下快 10%(因为它没有被其他线程进行 CPU 争用)。迭代运行的次数越多,最初的性能收益就相对越少,直到所有的热点方法被编译完性能收益也随之终止。

发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/158591.html原文链接:https://javaforall.cn

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2022年7月1,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
PostgreSQL 助力文本分析,让文本分析飞起来
众所周知文本数据的分析,一直是EXCEL的天下, 通过多种EXCEL的方法来进行数据的处理. 但如果涉及到几个文本文件的数据的聚合分析,合并分析,函数分析等等这样的情况. 所以怎么能让文本文件进行数据分析成为一个数据分析领域的卖点.
AustinDatabases
2021/07/15
8450
PostgreSQL   助力文本分析,让文本分析飞起来
MYSQL 8.0 后对语句的优化与特性
4 优化了驱动表视图以及CTE 在查询中的一些方式如使用了merge 和物化的方式
AustinDatabases
2023/02/28
7620
MYSQL 8.0 后对语句的优化与特性
MySQL-索引优化篇(1)_安装演示库 & [前缀索引、联合索引、覆盖索引] & explain参数
http://www.searchdoc.cn/rdbms/mysql/dev.mysql.com/doc/refman/5.7/en/index.com.coder114.cn.html
小小工匠
2021/08/17
4150
三高Mysql - Mysql索引和查询优化(偏实战部分)
实战部分挑选一些比较常见的情况,事先强调个人使用的是mysql 8.0.26,所以不同版本如果出现不同测试结果也不要惊讶,新版本会对于过去一些不会优化的查询进行优化。
阿东
2022/04/08
7960
三高Mysql - Mysql索引和查询优化(偏实战部分)
MySQL优化特定类型的查询(书摘备查)
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/wzy0623/article/details/53907619
用户1148526
2019/05/25
1.6K0
2021年数据科学家面试:4个基本SQL窗口函数介绍以及示例
墨墨导读:在数据科学家岗位的面试中,窗口函数(WINDOW function)是SQL函数家族中经常会被问到的主题。在本文中,我会根据面试的问题,问题模式和解决问题的基本策略向你展示一些典型的窗口函数,并提供一些示例的分步解决方案。
数据和云
2021/03/09
1.2K0
2021年数据科学家面试:4个基本SQL窗口函数介绍以及示例
MySql查询性能优化
在访问数据库时,应该只请求需要的行和列。请求多余的行和列会消耗MySql服务器的CPU和内存资源,并增加网络开销。 例如在处理分页时,应该使用LIMIT限制MySql只返回一页的数据,而不是向应用程序返回全部数据后,再由应用程序过滤不需要的行。 当一行数据被多次使用时可以考虑将数据行缓存起来,避免每次使用都要到MySql查询。 避免使用SELECT *这种方式进行查询,应该只返回需要的列。
lyb-geek
2018/07/26
2.1K0
三高Mysql - Mysql索引和查询优化(偏理论部分)
内容为慕课网的"高并发 高性能 高可用 MySQL 实战"视频的学习笔记内容和个人整理扩展之后的笔记,本节内容讲述的索引优化的内容,另外本部分内容涉及很多优化的内容,所以学习的时候建议翻开《高性能Mysql》第六章进行回顾和了解,对于Mysql数据的开发同学来说大致了解内部工作机制是有必要的。
阿东
2022/04/08
4910
三高Mysql - Mysql索引和查询优化(偏理论部分)
【数据科学】R语言连接数据库
数据是关系数据库系统中存储的统一化格式。 因此,实施我们需要非常先进和复杂的SQL查询统计计算。但是R能够轻松地连接到诸如MySql, Oracle, Sql server等多种关系数据库并且可以从它们的记录转为R中的数据帧。一旦数据是在R环境中可用,就变成了正常R数据集,并可以被操纵或使用所有强大包和函数来进行分析。 在本教程中,我们将使用 MySQL 作为参考数据库,用于连接到 R 中。 RMySQL 软件包 R有一个名为“RMySQL”它提供了与 MySQL 数据库之间的本地连接的内置软件包。可以使用
小莹莹
2018/04/23
1.6K0
【数据科学】R语言连接数据库
GraphQL实践5——Netflix Dgs Graphql懒加载
在graphql中,需要查询的字段由调用方传递,如果此时存在关联表才能获取的字段,但前端不需要该字段的时候,默认查询所有字段会带来较大开销
F嘉阳
2022/10/28
9890
安装MySQL样本数据库Sakila
    通常情况下对于一个全新的MySQL服务器,没有任何数据供我们测试和使用。对此,MySQL为我们提供了一些样本数据库,我们可以基于这些数据库作基本的操作以及压力测试等等。本文描述的是安装sakila数据库。该数据库需要安装在MySQL 5.0以上的版本。以下是其描述。
Leshami
2018/08/13
9780
Mysql基础篇--面试sql优化
3.匹配最左前缀匹配,仅仅对索引中最左列进行查询,比如复合索引 col1+col2+col3 ,使用索引的是 col1+col2,col1+col3,col1+col2+col3,不会使用索引的是col2+col3,col2.
小土豆Yuki
2020/06/15
8220
在PG数据库中,not in 和except的区别
在 PostgreSQL 中,NOT IN 和 EXCEPT 都可以用于从一个结果集中排除某些行,但它们在实现方式、适用场景和性能表现上存在一些区别。以下是详细的对比:
芥藍
2025/03/05
2660
MySQL调优之查询优化
一般情况下,查询可以看成按如下顺序执行任务:由客户端向服务端发起查询请求,然后在服务器端进行解析,生成执行计划,执行,最后将结果返回给客户端。
行百里er
2020/12/02
1.1K0
MySQL调优之查询优化
MySQL 示例数据库大全
我们练习 SQL 时,总会自己创造一些测试数据或者网上找些案例来学习,其实 MySQL 官方提供了好几个示例数据库,在 MySQL 的学习、开发和实践中具有非常重要的作用,能够帮助初学者更好地理解和应用 MySQL 的各种功能和特性,特别是练习 SQL 的好帮手。
MySQL技术
2024/06/13
3090
MySQL 示例数据库大全
牛客网数据库实战题解题思路及答案
SQL4请你查找所有已经分配部门的员工的last_name和first_name以及dept_no,未分配的部门的员工不显示,字段:last_name,first_name,dept_no
关忆北.
2021/12/07
6140
牛客网数据库实战题解题思路及答案
Java8学习之Stream(流)
本文讲述.stream()的内容,需要一些Lambda表达式的基础,之前也推送过关于Lambda表达式和Stream的相关内容,就看哪盘菜味道更好!
用户5927304
2019/07/31
1.1K0
Java 8 Streams 中的数据库 CRUD 操作
接触一个新工具的时候,刚开始要克服的最大障碍就是如何让你自己先尝试做出一个小东西来。现在你也许对 Java 8 中新的 Stream API 的运作方式在理解上比较自信,但你也许并没用它来进行过数据库查询操作。为了帮助你开始使用 Stream API 来对 SQL 数据库进行创建、修改和读取操作, 我已经在这个快速开始的教程中把它们整合到了一起。希望它能帮助你提升对流式API的使用水平!
Java团长
2018/07/23
8080
Java开发之使用Java 8 Streams 对数据库进行 CRUD 操作
Speedment 是一个开放源代码的工具集,它可以被用来生成 Java 实体,并且能将我们同数据库的通信过程管理起来。你可以利用一个图形工具连接到数据库并生成出一套完整的 ORM 框架代码来表示域模型。但是 Speedment 不单单只是一个代码生成器而已,它还是一个能插入应用程序中的运行时程序,这样就有可能将你的 Java 8 流式代码翻译成优化过的SQL查询。这也是我将会在本文中专门讲述的一个部分。
用户1289394
2018/12/07
5290
Java Stream流:最新版技巧大揭秘,轻松搞定数据处理!
JDK1.8 中增加了Stream流,Stream流是一种流式的处理数据的风格,也就是将要处理的数据当作流,在管道中进行传输,并在管道的每个节点对数据进行处理,如过滤、排序、转换等。
码农飞哥
2023/09/03
7170
Java Stream流:最新版技巧大揭秘,轻松搞定数据处理!
相关推荐
PostgreSQL 助力文本分析,让文本分析飞起来
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档