Loading [MathJax]/jax/output/CommonHTML/config.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >R语言股市可视化相关矩阵:最小生成树

R语言股市可视化相关矩阵:最小生成树

作者头像
拓端
发布于 2020-11-19 08:35:43
发布于 2020-11-19 08:35:43
75800
代码可运行
举报
文章被收录于专栏:拓端tecdat拓端tecdat
运行总次数:0
代码可运行

原文链接:http://tecdat.cn/?p=17835

本文在股市可视化中可视化相关矩阵 :最小生成树

在本文示例中,我将使用日数据和1分钟数据来可视化股票数据 。

我发现以下概念定义非常有用:

  • 连通图:在无向图中,若任意两个顶点vivi与vjvj都有路径相通,则称该无向图为连通图。
  • 强连通图:在有向图中,若任意两个顶点vivi与vjvj都有路径相通,则称该有向图为强连通图。
  • 连通网:在连通图中,若图的边具有一定的意义,每一条边都对应着一个数,称为权;权代表着连接连个顶点的代价,称这种连通图叫做连通网。
  • 生成树:一个连通图的生成树是指一个连通子图,它含有图中全部n个顶点,但只有足以构成一棵树的n-1条边。一颗有n个顶点的生成树有且仅有n-1条边,如果生成树中再添加一条边,则必定成环。
  • 最小生成树:在连通网的所有生成树中,所有边的代价和最小的生成树,称为最小生成树。
代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制


#*****************************************************************
# 加载历史数据
#*****************************************************************








getSymbols(tickers, src = 'yahoo', from = '1970-01-01', env = data, auto.assign =


for(i in ls(data)) data[[i]] = adjustOHLC(data[[i]




# 删除历史数据很少的样本
remove.min.history(data)


# 显示已删除的
print(setdiff(tickers,names(data$prices)))
 
#*****************************************************************
# 可视化关联矩阵
#*****************************************************************
prices = data$prices


ret = diff(log(prices))
ret = last(ret, 252)


 plt(ret, 0.5)

接下来,让我们获取1分钟的收盘价数据,并基于最近5天可视化相关性:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制

#*****************************************************************
# 加载历史数据
#*****************************************************************




if(!file.exists(filename)) {




data1[[ticker]] = getSymbol.intraday.google(ticker,












#*****************************************************************
# 可视化关联矩阵
#*****************************************************************




print(join(c(




,format(range(index(ret)), '%d-%b-%Y %H-%M')), ' '))
 plot.cor(ret, 0.5)

辅助函数:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制

#*****************************************************************
#函数创建相关矩阵
#*****************************************************************
clncor = function(ret, threshold = 0.5) {
cor(coredata(ret), use='complete.obs',method='pearson')

cor_mat[ abs(cor_mat) < threshold] = 0






#*****************************************************************
# 绘制最小生成树
#*****************************************************************
plco = function(ho = 0.5) {
cor_mat = clean.cor(ret, threshold


 
本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2020-11-18,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 拓端数据部落 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
数据结构【第六章知识小结】
连通图:在无向图G中,若对任何两个顶点 v、u 都存在从v 到 u 的路径,则称G是连通图。
MIKE笔记
2023/03/22
5800
数据结构【第六章知识小结】
R语言股市可视化相关矩阵:最小生成树|附代码数据
【视频】Copula算法原理和R语言股市收益率相依性可视化分析 R语言时间序列GARCH模型分析股市波动率 【视频】量化交易陷阱和R语言改进股票配对交易策略分析中国股市投资组合 使用R语言对S&P500股票指数进行ARIMA + GARCH交易策略 R语言量化交易RSI策略:使用支持向量机SVM R语言资产配置: 季度战术资产配置策略研究 R语言动量交易策略分析调整后的数据 TMA三均线股票期货高频交易策略的R语言实现 R语言时间序列:ARIMA / GARCH模型的交易策略在外汇市场预测应用 R语言基于Garch波动率预测的区制转移交易策略 r语言多均线股票价格量化策略回测 使用R语言对S&P500股票指数进行ARIMA + GARCH交易策略 Python基于粒子群优化的投资组合优化研究 R语言Fama-French三因子模型实际应用:优化投资组合 R语言动量和马科维茨Markowitz投资组合(Portfolio)模型实现 Python计算股票投资组合的风险价值(VaR) R语言Markowitz马克维茨投资组合理论分析和可视化 R语言中的广义线性模型(GLM)和广义相加模型(GAM):多元(平滑)回归分PYTHON用RNN神经网络LSTM优化EMD经验模态分解交易策略分析股票价格MACD R语言深度学习:用keras神经网络回归模型预测时间序列数据 【视频】CNN(卷积神经网络)模型以及R语言实现回归数据分析 Python TensorFlow循环神经网络RNN-LSTM神经网络预测股票市场价格时间序列和MSE评估准确性 数据分享|PYTHON用KERAS的LSTM神经网络进行时间序列预测天然气价格例子 Python对商店数据进行lstm和xgboost销售量时间序列建模预测分析 Matlab用深度学习长短期记忆(LSTM)神经网络对文本数据进行分类 RNN循环神经网络 、LSTM长短期记忆网络实现时间序列长期利率预测 结合新冠疫情COVID-19股票价格预测:ARIMA,KNN和神经网络时间序列分析 深度学习:Keras使用神经网络进行简单文本分类分析新闻组数据 用PyTorch机器学习神经网络分类预测银行客户流失模型 PYTHON用LSTM长短期记忆神经网络的参数优化方法预测时间序列洗发水销售数据 Python用Keras神经网络序列模型回归拟合预测、准确度检查和结果可视化 Python用LSTM长短期记忆神经网络对不稳定降雨量时间序列进行预测分析 R语言中的神经网络预测时间序列:多层感知器(MLP)和极限学习机(ELM)数据分析报告 R语言深度学习:用keras神经网络回归模型预测时间序列数据 Matlab用深度学习长短期记忆(LSTM)神经网络对文本数据进行分类 R语言KERAS深度学习CNN卷积神经网络分类识别手写数字图像数据(MNIST) MATLAB中用BP神经网络预测人体脂肪百分比数据 Python中用PyTorch机器学习神经网络分类预测银行客户流失模型 R语言实现CNN(卷积神经网络)模型进行回归数据分析 SAS使用鸢尾花(iris)数据集训练人工神经网络(ANN)模型 【视频】R语言实现CNN(卷积神经网络)模型进行回归数据分析 Python使用神经网络进行简单文本分类 R语言用神经网络改进Nelson-Siegel模型拟合收益率曲线分析 R语言基于递归神经网络RNN的温度时间序列预测 R语言神经网络模型预测车辆数量时间序列 R语言中的BP神经网络模型分析学生成绩 matlab使用长短期记忆(LSTM)神经网络对序列数据进行分类 R语言实现拟合神经网络预测和结果可视化 用R语言实现神经网络预测股票实例 使用PYTHON中KERAS的LSTM递归神经网络进行时间序列预测 python用于NLP的seq2seq模型实例:用Keras实现神经网络机器翻译 用于NLP的Python:使用Keras的多标签文本LSTM神经网络分类
拓端
2023/01/18
8220
最小生成树算法实现与分析:Prim 算法,Kruskal 算法;
连通图:无向图G中,若从顶点i到顶点j有路径相连,则称i,j是连通的;如果G是有向图,那么连接i和j的路径中所有的边都必须同向;如果图中任意两点之间都是连通的,那么图被称作连通图。
西湖醋鱼
2020/12/30
1.4K0
最小生成树算法实现与分析:Prim 算法,Kruskal 算法;
最小生成树的两种方法(Kruskal算法和Prim算法)
此算法可以称为“加边法”,初始最小生成树边数为0,每迭代一次就选择一条满足条件的最小代价边,加入到最小生成树的边集合里。
233333
2020/01/09
2.1K0
每周学点大数据 | No.17最小生成树
No.17期 最小生成树(一) Mr. 王:我们再来讲一个时间亚线性算法——最小生成树问题。这里先简单介绍一下树的概念。 小可:那什么是树呢? Mr. 王:树的简单定义,就是一个没有回路的连通无向图。
灯塔大数据
2018/04/08
9630
每周学点大数据 | No.17最小生成树
最小生成树之Prim算法和Kruskal算法
一个连通图可能有多棵生成树,而最小生成树是一副连通加权无向图中一颗权值最小的生成树,它可以根据Prim算法和Kruskal算法得出,这两个算法分别从点和边的角度来解决。
业余草
2019/01/21
1.9K0
最小生成树之Prim算法和Kruskal算法
数据结构01-最小生成树-Prim算法
给定一个带权的无向连通图,能够连通该图的全部顶点且不产生回路的子图即为该图的生成树;
yangjiao
2021/03/04
5710
数据结构—最小生成树
若图中顶点数为n,则它的生成树含有n-1条边。对生成树而言,若砍去它的一条边,则会变成非连通图,若加上一条边则会形成一个回路。
莫浅子
2022/12/18
1.3K0
数据结构—最小生成树
漫画:什么是最小生成树?
它的最小生成树是什么样子呢?下图绿色加粗的边可以把所有顶点连接起来,又保证了边的权值之和最小:
小灰
2020/04/22
4900
基础算法 | 关于图论中最小生成树(Minimum Spanning Tree)那些不可告人的秘密
最近双11又快到了 有女朋友的忙着帮女朋友清空购物车 有男朋友的忙着叫男朋友帮清购物车 而小编就比较牛逼了 小编沉迷学习,已经无法自拔。 那么今天小编又给大家带来什么好玩的东西呢? 没错 那就是小编通过 夜夜修仙,日日操劳 终于修成的正果 用起来很牛逼,说出去很装逼的 最小生成树 纲要 - 什么是图(network) - 什么是最小生成树 (minimum spanning tree) - 最小生成树的算法 1 什么是图 这里的图当然不是我们日常说的图片或者地图。通常情况下,我们把图看成是一种由“顶点(no
用户1621951
2018/04/19
1K0
基础算法 | 关于图论中最小生成树(Minimum Spanning Tree)那些不可告人的秘密
数据结构与算法——最小生成树
在之前的文章中已经详细介绍了图的一些基础操作。而在实际生活中的许多问题都是通过转化为图的这类数据结构来求解的,这就涉及到了许多图的算法研究。
五分钟学算法
2019/05/06
1.7K0
数据结构与算法——最小生成树
图的应用:最小生成树
在学习了图的基本结构和遍历方式后,我们再继续地深入学习一些图的基本应用。在之前的数据结构中,我们并没接触太多的应用场景,但是图的这两类应用确是面试或考试中经常出现的问题,而且出现的频率还非常高,不得不来好好说一说。
硬核项目经理
2021/06/10
7910
图的应用:最小生成树
数据结构与算法(十三)——连通图的最小生成树问题
一个连通图的生成树指的是,极小的连通子图,它含有图中的全部n个顶点,但是只足以构成一棵树的(n-1)条边。
拉维
2022/06/15
4K0
数据结构与算法(十三)——连通图的最小生成树问题
【c++高阶DS】最小生成树
连通图中的每一棵生成树,都是原图的一个极大无环子图,即:从其中删去任何一条边,生成树就不在连通;反之,在其中引入任何一条新边,都会形成一条回路,且这些边的权值之和最小
用户11029103
2024/12/28
1810
【c++高阶DS】最小生成树
图的应用——最小生成树
最小生成树 生成树(极小连通子图):含有图中全部n个顶点,但只有n-1条边。并且n-1条边不能构成回路。 [在这里插入图片描述] 生成森林:非连通图每个连通分量的生成树一起组成非连通图的生成森林。 [在这里插入图片描述] 求最小生成树 使用不同的遍历图的方法,可以得到不同的生成树 从不同的顶点出发,也可能得到不同的生成树。 按照生成树的定义,n 个顶点的连通网络的生成树有 n 个顶点、n-1 条边。在网的多个生成树中,寻找一个各边权值之和最小的生成树 构造最小生成树的准则 必须只使用该网中的边来构造最小生成
ruochen
2021/06/29
8580
图的应用——最小生成树
图的应用(最小生成树,拓扑排序)
应用图解决现实问题是我们使用图这种数据结构的原因所在。 最小生成树是图的应用中很常见的一个概念,一个图的最小生成树不是唯一的,但最小生成树的边的权值之和纵使唯一的。最小生成树的算法主要有Prim算法和Kruskal算法。这两种算法都是基于贪心算法策略(只考虑眼前的最佳利益,而不考虑整体的效率)。 拓扑排序是指由一个有向无环图的顶点组成的序列,此序列满足以下条件:
跋扈洋
2022/12/03
4580
【算法】关于图论中的最小生成树(Minimum Spanning Tree)详解
这里的图当然不是我们日常说的图片或者地图。通常情况下,我们把图看成是一种由“顶点”和“边”组成的抽象网络。在各个“顶点“间可以由”边“连接起来,使两个顶点间相互关联起来。图的结构可以描述多种复杂的数据对象,应用较为广泛,看下图:
短短的路走走停停
2019/05/13
8K0
最小生成树的Kruskal算法
定义: 一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n 个结点,并且有保持图连通的最少的边。[1] 最小生成树可以用kruskal(克鲁斯卡尔)算法或prim(普里姆)算法求出。 Kruskal算法简述: 假设 WN=(V,{E}) 是一个含有 n 个顶点的连通网,则按照克鲁斯卡尔算法构造最小生成树的过程为:先构造一个只含 n 个顶点,而边集为空的子图,若将该子图中各个顶点看成是各棵树上的根结点,则它是一个含有 n 棵树的一个森林。之后,从网的边集 E 中选取一条权值最小的
用户3577892
2020/06/12
2K0
复杂网络(2)--图论的基本理论-最小生成树问题
该文章是一篇技术文章,主要介绍了如何通过编辑距离算法实现文本相似度的计算。文章首先介绍了编辑距离算法的原理,然后详细讲解了基于编辑距离的文本相似度计算方法,并给出了具体的实现代码。最后,文章还探讨了编辑距离算法在技术社区中的应用,包括相似度计算和相似问答系统。
锦小年
2018/01/02
1.6K0
复杂网络(2)--图论的基本理论-最小生成树问题
最小生成树——Prim算法与Kruskal算法
最小生成树概念:连通图: 在一个无向图中,任意两个顶点之间都是可达的(有路径连通),则成该无向图为连通图。生成树: 一个连通图的生成树是一个极小的连通子图,它含有图中的全部顶点,但只有构成一棵树的n-1条边。也就是说,无向图中连通n个顶点n-1条边就叫做生成树。最小生成树: 构造连通图的最小代价生成树称为最小生成树,也就是说,所有的边加权后和最小的树。
mindtechnist
2024/08/08
1500
最小生成树——Prim算法与Kruskal算法
推荐阅读
相关推荐
数据结构【第六章知识小结】
更多 >
领券
💥开发者 MCP广场重磅上线!
精选全网热门MCP server,让你的AI更好用 🚀
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档
本文部分代码块支持一键运行,欢迎体验
本文部分代码块支持一键运行,欢迎体验