前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >【数据库架构】什么是 OLAP?

【数据库架构】什么是 OLAP?

作者头像
架构师研究会
发布于 2022-03-28 07:10:11
发布于 2022-03-28 07:10:11
4.3K0
举报
文章被收录于专栏:超级架构师超级架构师

作为数据仓库实施的核心组件,OLAP 为商业智能 (BI) 和决策支持应用程序提供快速、灵活的多维数据分析

什么是 OLAP?

OLAP(用于在线分析处理)是一种软件,用于对来自数据仓库、数据集市或其他一些统一的集中式数据存储的大量数据进行高速多维分析。

大多数业务数据都有多个维度——数据被分解为多个类别以进行展示、跟踪或分析。例如,销售数据可能具有与位置(地区、国家、州/省、商店)、时间(年、月、周、日)、产品(服装、男/女/童、品牌、类型)相关的多个维度,和更多。

但在数据仓库中,数据集存储在表中,每个表一次只能将数据组织到其中两个维度中。OLAP 从多个关系数据集中提取数据并将其重新组织成多维格式,从而实现非常快速的处理和非常有洞察力的分析。

什么是 OLAP 多维数据集?

大多数 OLAP 系统的核心,OLAP 多维数据集是一个基于数组的多维数据库,与传统的关系数据库相比,它可以更快、更高效地处理和分析多个数据维度。

关系数据库表的结构类似于电子表格,以二维、逐列的格式存储各个记录。数据库中的每个数据“事实”都位于两个维度(行和列)的交集处,例如区域和总销售额。

SQL 和关系数据库报告工具当然可以查询、报告和分析存储在表中的多维数据,但随着数据量的增加,性能会降低。并且需要大量的工作来重新组织结果以专注于不同的维度。

这就是 OLAP 多维数据集的用武之地。OLAP 多维数据集通过附加层扩展了单个表,每个层都添加了额外的维度——通常是维度的“概念层次结构”中的下一个级别。例如,立方体的顶层可能按地区组织销售;附加层可以是国家、州/省、城市甚至特定商店。

理论上,一个立方体可以包含无数层。(代表三个以上维度的 OLAP 多维数据集有时称为超多维数据集。)更小的多维数据集可以存在于层内——例如,每个商店层可以包含按销售人员和产品安排销售的多维数据集。在实践中,数据分析师将创建仅包含他们需要的层的 OLAP 多维数据集,以实现最佳分析和性能。

OLAP 多维数据集支持四种基本类型的多维数据分析:

向下钻取

向下钻取操作通过以下两种方法之一将不太详细的数据转换为更详细的数据——在概念层次结构中向下移动或向多维数据集添加新维度。例如,如果您查看组织日历或财政季度的销售数据,您可以向下钻取以查看每个月的销售额,在“时间”维度的概念层次结构中向下移动。

卷起

上卷与下钻功能相反——它通过在概念层次结构中向上移动或通过减少维数来聚合 OLAP 多维数据集上的数据。例如,您可以通过查看每个国家的数据而不是每个城市的数据,在“位置”维度的概念层次结构中向上移动。

切片和骰子(Slice and dice)

切片操作通过从主 OLAP 多维数据集中选择单个维度来创建子多维数据集。例如,您可以通过突出显示组织的第一个财政或日历季度(时间维度)的所有数据来执行切片。

骰子操作通过在主 OLAP 多维数据集中选择多个维度来隔离子多维数据集。例如,您可以通过按组织的日历或财政季度(时间维度)以及美国和加拿大内部(位置维度)突出显示所有数据来执行掷骰子操作。

枢 (Pivot)

pivot 函数旋转当前的多维数据集视图以显示数据的新表示 - 启用数据的动态多维视图。OLAP 数据透视表功能与电子表格软件(如 Microsoft Excel)中的数据透视表功能相当,但虽然 Excel 中的数据透视表可能具有挑战性,但 OLAP 数据透视表相对更易于使用(需要较少的专业知识)并且具有更快的响应时间和查询性能。

MOLAP 与 ROLAP 与 HOLAP

MOLAP

直接与多维 OLAP 多维数据集一起工作的 OLAP 称为多维 OLAP 或 MOLAP。同样,对于大多数用途,MOLAP 是最快和最实用的多维数据分析类型。

但是,在某些情况下,还有两种其他类型的 OLAP 可能更可取:

ROLAP

ROLAP 或关系 OLAP 是一种多维数据分析,它直接对关系表上的数据进行操作,而无需先将数据重新组织到一个多维数据集中。

如前所述,SQL 是用于多维查询、报告和分析的完美工具。但是所需的 SQL 查询很复杂,性能可能会拖累,并且生成的数据视图是静态的——它不能被旋转以表示不同的数据视图。当直接处理大量数据的能力比性能和灵活性更重要时,ROLAP 是最佳选择。

HOLAP

HOLAP 或混合 OLAP 尝试在单个 OLAP 体系结构内创建关系数据库和多维数据库之间的最佳分工。关系表包含大量数据,OLAP 多维数据集用于聚合和推测处理。HOLAP 需要同时支持 MOLAP 和 ROLAP 的 OLAP 服务器

HOLAP 工具可以“钻取”数据立方体到关系表,这为快速数据处理和灵活访问铺平了道路。这种混合系统可以提供更好的可扩展性,但在访问关系数据源时无法避免不可避免的减速。此外,其复杂的架构通常需要更频繁的更新和维护,因为它必须存储和处理来自关系数据库和多维数据库的所有数据。出于这个原因,HOLAP 最终可能会变得更加昂贵。

OLAP 与 OLTP

在线事务处理(OLTP)是指专注于面向事务的数据和应用程序的数据处理方法和软件。

OLAP 和 OLTP 的主要区别在于名称:OLAP 本质上是分析性的,而 OLTP 是事务性的。

OLAP 工具设计用于对数据仓库中的数据进行多维分析,其中包含交易数据和历史数据。事实上,OLAP 服务器通常是数据仓库解决方案的中间分析层。OLAP 的常见用途包括数据挖掘和其他商业智能应用程序、复杂的分析计算和预测场景,以及财务分析、预算和预测计划等业务报告功能。

OLTP 旨在通过尽可能快速准确地处理最近的事务来支持面向事务的应用程序。OLTP 的常见用途包括 ATM、电子商务软件、信用卡支付处理、在线预订、预订系统和记录保存工具。

要深入了解这些方法之间的差异,请查看“OLAP 与 OLTP:有什么区别?”

OLAP 和云架构

OLAP 使公司能够通过将其转换为最实用的多维分析格式来最大限度地发挥其公司数据的潜力。这反过来又使识别有价值的业务洞察变得更加容易。但是,如果将这些系统保留在内部,则会限制扩展的潜力。

基于云的 OLAP 服务更便宜且更易于设置,这使得它们对预算有限的小型企业或初创公司更具吸引力。企业可以利用基于云的数据仓库的巨大潜力,以无与伦比的速度执行复杂的分析,因为它们使用大规模并行处理 (MPP)。因此,公司可以在云速度和规模上使用 OLAP,分析大量数据,而无需将其从云数据仓库中移出。

Constance Hotels、Resorts & Golf 是一家豪华酒店集团,在印度洋的岛屿上拥有九家酒店。然而,缺乏岛与岛之间的通信让位于组织孤岛,每个度假村的业务数据都是孤立的。该组织构建了一个云数据仓库和分析架构,以将所有本地系统和工具与基于云的中央数据存储库链接起来。在此过程中,公司获得了利用高级预测分析和实施 OLAP 系统所需的全集团洞察力。

云架构中的 OLAP 是面向未来构建的快速且经济高效的解决方案。制作多维数据集后,团队可以使用现有的商业智能工具即时连接 OLAP 模型,并从他们的云数据中获取交互式实时洞察。

本文

https://jiagoushi.pro/what-olap

讨论:知识星球【首席架构师圈】或者加微信小号【cea_csa_cto】或者加QQ群【792862318】

公众号

【jiagoushipro】【超级架构师】精彩图文详解架构方法论,架构实践,技术原理,技术趋势。我们在等你,赶快扫描关注吧。

微信小号

【cea_csa_cto】50000人社区,讨论:企业架构,云计算,大数据,数据科学,物联网,人工智能,安全,全栈开发,DevOps,数字化.

QQ群

【792862318】深度交流企业架构,业务架构,应用架构,数据架构,技术架构,集成架构,安全架构。以及大数据,云计算,物联网,人工智能等各种新兴技术。加QQ群,有珍贵的报告和干货资料分享。

视频号

【超级架构师】1分钟快速了解架构相关的基本概念,模型,方法,经验。每天1分钟,架构心中熟。

知识星球

向大咖提问,近距离接触,或者获得私密资料分享。

喜马拉雅

路上或者车上了解最新黑科技资讯,架构心得。

【智能时刻,架构君和你聊黑科技】

知识星球

认识更多朋友,职场和技术闲聊。

知识星球【职场和技术】

微博

【智能时刻】

智能时刻

哔哩哔哩

【超级架构师】

抖音

【cea_cio】超级架构师

快手

【cea_cio_cto】超级架构师

小红书

【cea_csa_cto】超级架构师

谢谢大家关注,转发,点赞和点在看。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2022-03-27,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 首席架构师智库 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
HAWQ取代传统数仓实践(十九)——OLAP
本文介绍了 Zeppelin 是什么、能做什么,以及 Zeppelin 的特性、组件和扩展。主要内容包括:Zeppelin 是基于 Apache Spark 的开源大数据可视化分析平台,支持交互式查询、实时数据可视化和机器学习等功能。Zeppelin 的特性包括支持多种数据源、提供交互式查询、支持实时数据可视化、提供机器学习接口等。Zeppelin 的组件包括: Notebook:交互式查询工具,支持多种编程语言; Interpreter:解释器,支持多种编程语言; Notebook Server:服务端,支持交互式查询; Shell:命令行工具,支持交互式查询; Spark:基于 Spark 的数据科学平台,支持交互式查询; ML:机器学习平台,支持交互式查询; Gallery:数据可视化模块,支持数据可视化; Extensions:扩展模块,支持自定义功能。
用户1148526
2018/01/03
1.9K0
HAWQ取代传统数仓实践(十九)——OLAP
联机分析处理技术
  20世纪80年代开始,联机事务处理(OLTP)的数据库系统已在企事业单位得到广泛的应用。为了获得及时准确的决策信息,在 OLTP 数据库系统中增加了一些简单的分析处理功能,形成一种 “事务处理与分析处理” 合二为一的系统。由于传统数据库的事务处理方式和决策的分析处理对数据需求存在明显的冲突,导致传统数据库系统无法很好地支持决策分析活动。数据库之父 E.F.Codd 及其同仁于1993年提出了联机分析处理(On-Line Analysis Processing,OLAP)的概念,并为 OLAP 系统提出了12条广为人知的准则,使 OLAP 系统与 OLTP 系统或 OLTP 混合决策支持功能的系统区分开来。
Francek Chen
2025/01/22
950
联机分析处理技术
【数据库架构】OLTP 和 OLAP 的区别
OLTP 和 OLAP 都是在线处理系统。OLTP 是一种事务处理,而 OLAP 是一种分析处理系统。OLTP 是一个管理互联网上面向交易的应用程序的系统,例如 ATM。OLAP 是一个在线系统,可以报告财务报告、预测等多维分析查询。 OLTP 和 OLAP 的区别 OLTP 和 OLAP 都是在线处理系统。OLTP 是一种事务处理,而 OLAP 是一种分析处理系统。OLTP 是一个管理互联网上面向交易的应用程序的系统,例如 ATM。OLAP 是一个在线系统,可以报告财务报告、预测等多维分析查询。 OLT
架构师研究会
2022/04/13
2.6K0
数据仓库术语一览
数据仓库:数据仓库是一个支持管理决策的数据集合。数据是面向主题的、集成的、不易丢失的并且是时间变量。数据仓库是所有操作环境和外部数据源的快照集合。它并不需要非常精确,因为它必须在特定的时间基础上从操作环境中提取出来。 数据集市:数据仓库只限于单个主题的区域,例如顾客、部门、地点等。数据集市在从数据仓库获取数据时可以依赖于数据仓库,或者当它们从操作系统中获取数据时就不依赖于数据仓库。 事实:事实是数据仓库中的信息单元,也是多维空间中的一个单元,受分析单元的限制。事实存储于一张表中(当使用关系数据库时)或者是多
小莹莹
2018/04/18
1.6K0
数据仓库术语一览
关于OLAP和OLTP你想知道的一切
OLAP是英文Online Analytical Processing的缩写,中文称为联机分析处理。它是一种基于多维数据模型的分析处理技术,用于从不同的角度进行数据挖掘和分析,以帮助用户快速发现数据之间的相关性和趋势。
用户1413827
2023/11/28
7.1K0
关于OLAP和OLTP你想知道的一切
大数据OLAP系统(1)——概念篇
OLAP(OnLine Analytical Processing),即联机分析处理。OLAP对业务数据执行多维分析,并提供复杂计算,趋势分析和复杂数据建模的能力。它主要用于支持企业决策管理分析,是许多商务智能(BI)应用程序背后的技术。OLAP使最终用户可以对多个维度的数据进行即席分析,从而获取他们所需知识,以便更好地制定决策。OLAP技术已被定义为实现“快速访问共享的多维信息”的能力。
Spark学习技巧
2020/12/28
2.2K0
大数据OLAP系统(1)——概念篇
OushuDB入门(七)——OLAP篇
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/wzy0623/article/details/80422836
用户1148526
2019/05/25
1.2K0
OLAP | 基础知识梳理
OLAP(Online AnalyticalProcessing)是一种数据处理技术,专门设计用于支持复杂的分析操作,侧重对决策人员和高层管理人员的决策支持。
数据仓库践行者
2021/12/27
1.6K0
OLAP | 基础知识梳理
SQL多维分析
早在 1993年,关系数据库之父 E.F.Codd[1] 提出了 OLAP 概念,不遗余力指出面向记录的OLTP关系型数据库从根本上不适合查询分析的需求。
Yiwenwu
2024/07/07
6460
SQL多维分析
主流大数据OLAP框架对比
随着互联网、物联网、5G、人工智能、云计算等技术的不断发展,越来越多的数据在互联网上产生,对互联网的运营也开始进入精细化,因此大数据、数据分析、数字营销开始变成每个互联网企业的重点。在做数据分析时有OLAP、OLTP是我们必定会遇到的技术,在介绍OLAP引擎技术选型之前,我们先看看这两个技术分别是什么意思?
qihang
2024/03/16
2.2K0
【数据管理】OLAP 与 OLTP:有什么区别?
这些术语经常相互混淆,那么它们的主要区别是什么?您如何根据自己的情况选择合适的术语? 我们生活在一个数据驱动的时代,使用数据做出更明智决策并更快响应不断变化的需求的组织更有可能脱颖而出。您可以在新的服务产品(例如拼车应用程序)以及推动零售的强大系统(电子商务和店内交易)中看到这些数据。 在数据科学领域,有两种类型的数据处理系统:在线分析处理(OLAP)和在线事务处理(OLTP)。主要区别在于,一种使用数据来获得有价值的见解,而另一种则纯粹是可操作的。但是,有一些有意义的方法可以使用这两个系统来解决数据问题
架构师研究会
2022/03/31
1.7K0
【数据管理】OLAP 与 OLTP:有什么区别?
深度|从数据仓库到数据湖——浅谈数据架构演进
网管产品需要从数据仓库的角度来看,才能获得完整的视图。数据集成真正从大数据的角度来看,才能明白其中的挑战。一个运行了20多年的数据架构,必然有其合理性。也正是因为年代久远,存量过多,才导致举步维艰。在Cloud和5G时代,超密度网络集成和大数据洞察需求给电信供应商带来新的挑战,从数据仓库到数据湖,不仅仅架构的变革,更是思维方式的升级。本文尝试梳理数据架构的演进过程。 01 数据仓库历史沿革 1970年,关系数据库的研究原型System R 和INGRES开始出现,这两个系统的设计目标都是面向on-line
灯塔大数据
2018/04/08
7.2K0
深度|从数据仓库到数据湖——浅谈数据架构演进
【数据库架构】什么是 OLTP?
OLTP(在线事务处理)支持在 ATM 和在线银行、收银机和电子商务以及我们每天与之交互的许多其他服务背后进行快速、准确的数据处理。 什么是 OLTP? OLTP 或在线事务处理允许大量人员(通常通过 Internet)实时执行大量数据库事务。 数据库事务是对数据库中数据的更改、插入、删除或查询。OLTP 系统(以及它们支持的数据库交易)推动了我们每天进行的许多金融交易,包括网上银行和 ATM 交易、电子商务和店内购物,以及酒店和航空公司预订等等。在每种情况下,数据库交易也保留为相应金融交易的记录。OLT
架构师研究会
2022/04/11
2.3K0
【数据库架构】OLTP 和 OLAP:实际比较
OLTP 和 OLAP:这两个术语看起来相似,但指的是不同类型的系统。在线事务处理 (OLTP) 实时捕获、存储和处理来自事务的数据。在线分析处理 (OLAP) 使用复杂的查询来分析来自 OLTP 系统的汇总历史数据。 什么是 OLTP? OLTP 系统在数据库中捕获和维护事务数据。每个事务都涉及由多个字段或列组成的单个数据库记录。示例包括银行和信用卡活动或零售结账扫描。 在 OLTP 中,重点是快速处理,因为 OLTP 数据库经常被读取、写入和更新。如果事务失败,内置系统逻辑可确保数据完整性。 什么是
架构师研究会
2022/04/08
3.8K0
数仓入门就靠它了!!!
数据仓库是一个面向主题的(Subject Oriented)、集成的(Integrate)、相对稳定的(Non-Volatile)、反映历史变化(Time Variant)的数据集合,它用于支持企业或组织的决策分析处理。
857技术社区
2022/05/17
3750
数仓入门就靠它了!!!
百度、阿里、腾讯平台架构都熟悉,小米大数据平台架构OLAP架构演进是否了解
分析型系统进行联机数据分析,一般的数据来源是数据仓库,而数据仓库的数据来源为可操作型系统,可操作型 系统的数据来源于业务数据库中,那么我们常用的数据仓库的组成和架构一般如下图所示
Lansonli
2021/10/11
1.5K0
OLAP(On-Line Analysis Processing)在线分析处理引擎
OLAP(On-Line Analysis Processing)在线分析处理是一种共享多维信息的快速分析技术;OLAP利用多维数据库技术使用户从不同角度观察数据;OLAP用于支持复杂的分析操作,侧重于对管理人员的决策支持,可以满足分析人员快速、灵活地进行大数据复量的复杂查询的要求,并且以一种直观、易懂的形式呈现查询结果,辅助决策。 上面是OLAP的一些不同的解释,本文将从以下几个方面介绍OLAP。 开源OLAP引擎:Mondrian快速入门 OLAP的基本概念 OLAP的特点 OLAP的操作
Albert陈凯
2018/04/04
2.6K0
OLAP(On-Line Analysis Processing)在线分析处理引擎
常见开源OLAP技术架构对比
OLAP(On-line Analytical Processing,联机分析处理)是在基于数据仓库多维模型的基础上实现的面向分析的各类操作的集合。可以比较下其与传统的OLTP(On-line Transaction Processing,联机事务处理)的区别来看一下它的特点:
shengjk1
2021/11/09
2.4K0
常见开源OLAP技术架构对比
主流的 OLAP 引擎介绍 - OLAP极简教程
随着互联网、物联网、5G、人工智能、云计算等技术的不断发展,越来越多的数据在互联网上产生,对互联网的运营也开始进入精细化,因此大数据、数据分析、数字营销开始变成每个互联网企业的重点。在做数据分析时有OLAP、OLTP是我们必定会遇到的技术,在介绍OLAP引擎技术选型之前,我们先看看这两个技术分别是什么意思?
一个会写诗的程序员
2021/12/24
8.8K0
主流的 OLAP 引擎介绍 - OLAP极简教程
数仓建模与分析建模_数据仓库建模与数据挖掘建模
数据仓库: 数据仓库是一个面向主题的、集成的、非易失的、随时间变化的数据集合。重要用于组织积累的历史数据,并且使用分析方法(OLAP、数据分析)进行分析整理,进而辅助决策,为管理者、企业系统提供数据支持,构建商业智能。
全栈程序员站长
2022/11/09
1.4K0
数仓建模与分析建模_数据仓库建模与数据挖掘建模
相关推荐
HAWQ取代传统数仓实践(十九)——OLAP
更多 >
领券
💥开发者 MCP广场重磅上线!
精选全网热门MCP server,让你的AI更好用 🚀
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档