转载请注明出处:小锋学长生活大爆炸[xfxuezhagn.cn] 如果本文帮助到了你,欢迎[点赞、收藏、关注]哦~
连通图是一个图论中的概念。一个无向图被称为连通图,当且仅当图中任意两个节点都有路径连接。换句话说,从图中的任意一个节点出发,都能通过一系列边到达图中的任何其他节点。
这个图是连通的,因为从任何节点(例如A)出发,你都可以通过一系列边到达图中的其他节点(B, C, D)。
这个图是非连通的,因为节点A和B在一个连通分量中,而节点C和D在另一个连通分量中,它们之间没有直接或间接的路径连接。
dgl.khop_in_subgraph
或 dgl.dfs_nodes_generator
生成连通子图。import dgl
import torch
def get_connected_components(graph):
visited = torch.zeros(graph.num_nodes(), dtype=torch.bool)
components = []
def bfs(node):
queue = [node]
component = []
while queue:
current = queue.pop(0)
if not visited[current]:
visited[current] = True
component.append(current)
neighbors = graph.successors(current).tolist() + graph.predecessors(current).tolist()
queue.extend([n for n in neighbors if not visited[n]])
return component
for node in range(graph.num_nodes()):
if not visited[node]:
component = bfs(node)
components.append(component)
return components
# 示例用法
edges = ([0, 1, 2, 3, 5], [1, 2, 3, 4, 6])
graph = dgl.graph(edges)
components = get_connected_components(graph)
if len(components) == 1:
print("The graph is connected.")
else:
print(f"The graph is not connected. It has {len(components)} components.")
print("Components:", components)
is_connected
和 connected_components
函数,直接且简洁。import dgl
import networkx as nx
def check_graph_connectivity(graph):
# 将 DGL 图转换为 NetworkX 图
nx_graph = graph.to_networkx().to_undirected()
# 使用 NetworkX 检查连通性
if nx.is_connected(nx_graph):
print("The graph is connected.")
else:
connected_components = list(nx.connected_components(nx_graph))
print(f"The graph is not connected. It has {len(connected_components)} components.")
print("Sizes of each component:", [len(comp) for comp in connected_components])
# 示例用法
edges = ([0, 1, 2, 3, 5], [1, 2, 3, 4, 6])
graph = dgl.graph(edges)
check_graph_connectivity(graph)
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。