我试图获得定向加权网络的中心性度量。我一直在使用igraph
和tnet
包在R
中。但是,我发现了使用这两个包获得的结果的一些差异,我对这些差异的原因有些困惑。见下文。
require(igraph)
require(tnet)
set.seed(1234)
m <- expand.grid(from = 1:4, to = 1:4)
m <- m[m$from != m$to, ]
m$weight <- sample(1:7, 12, replace = T)
igraph_g <- graph.data.frame(m)
tnet_g <- as.tnet(m)
closeness(igraph_g, mode = "in")
2 3 4 1
0.05882353 0.12500000 0.07692308 0.09090909
closeness(igraph_g, mode = "out")
2 3 4 1
0.12500000 0.06250000 0.06666667 0.10000000
closeness(igraph_g, mode = "total")
2 3 4 1
0.12500000 0.14285714 0.07692308 0.16666667
closeness_w(tnet_g, directed = T, alpha = 1)
node closeness n.closeness
[1,] 1 0.2721088 0.09070295
[2,] 2 0.2448980 0.08163265
[3,] 3 0.4130809 0.13769363
[4,] 4 0.4081633 0.13605442
有人知道怎么回事吗?
发布于 2013-12-04 20:33:57
在发布了这个问题之后,我偶然发现了一个博客,它是由tnet
包的维护者Tore维护的。我也问了同样的问题,用博客这上的评论来撕毁。这是托尔的回答:
感谢您使用tnet!
igraph
能够处理权重;然而,igraph
中的距离函数期望权重代表‘成本’而不是‘强度’。换句话说,领带的重量被认为是跨越领带所需的能量量。见加权网络中的最短路径。
因此,如果运行Tore提供的以下代码(在将权重传递给igraph
之前取权重的倒数),则可以获得tnet
和igraph
的等效贴近度分数。
> # Load packages
> library(tnet)
>
> # Create random network (you could also use the rg_w-function)
> m <- expand.grid(from = 1:4, to = 1:4)
> m <- m[m$from != m$to, ]
> m$weight <- sample(1:7, 12, replace = T)
>
> # Make tnet object and calculate closeness
> closeness_w(m)
node closeness n.closeness
[1,] 1 0.2193116 0.07310387
[2,] 2 0.3809524 0.12698413
[3,] 3 0.2825746 0.09419152
[4,] 4 0.3339518 0.11131725
>
> # igraph
> # Invert weights (transform into costs from strengths)
> # Multiply weights by mean (just scaling, not really)
> m$weight <- mean(m$weight)/m$weight
> # Transform into igraph object
> igraph_g <- graph.data.frame(m)
> # Compute closeness
> closeness(igraph_g, mode = "out")
2 3 4 1
0.3809524 0.2825746 0.3339518 0.2193116
https://stackoverflow.com/questions/20388087
复制