下面是响应变量使用两个标签(是和否)的数据集:
No. outlook temperature humidity windy play
1 sunny hot high FALSE no
2 sunny hot high TRUE no
3 overcast hot high FALSE yes
4 rainy mild high FALSE yes
5 rainy cool normal FALSE yes
6 rainy cool normal TRUE no
7 overcast cool normal TRUE yes
8 sunny mild high FALSE no
9 sunny cool normal FALSE yes
10 rainy mild normal FALSE yes
11 sunny mild normal TRUE yes
12 overcast mild high TRUE yes
13 overcast hot normal FALSE yes
14 rainy mild high TRUE no
这些决定及其各自的分类如下:
1: (outlook,overcast) -> (play,yes)
[Support=0.29 , Confidence=1.00 , Correctly Classify= 3, 7, 12, 13]
2: (humidity,normal), (windy,FALSE) -> (play,yes)
[Support=0.29 , Confidence=1.00 , Correctly Classify= 5, 9, 10]
3: (outlook,sunny), (humidity,high) -> (play,no)
[Support=0.21 , Confidence=1.00 , Correctly Classify= 1, 2, 8]
4: (outlook,rainy), (windy,FALSE) -> (play,yes)
[Support=0.21 , Confidence=1.00 , Correctly Classify= 4]
5: (outlook,sunny), (humidity,normal) -> (play,yes)
[Support=0.14 , Confidence=1.00 , Correctly Classify= 11]
6: (outlook,rainy), (windy,TRUE) -> (play,no)
[Support=0.14 , Confidence=1.00 , Correctly Classify= 6, 14]
发布于 2014-11-14 09:32:26
你只是在预测Play = Yes还是Play = No。
混淆矩阵如下所示:
Predicted
+------+------+
| Yes | No |
+-------------------+
A | | | |
c | Yes | TP | FP |
t | | | |
u +-------------------+
a | | | |
l | No | FN | TN |
| | | |
+-----+------+------+
TP: True positives
FP: False positives
FN: False negatives
TN: True negatives
计算精度为(TP + TN)/(TP + FP + TN + FN)。
https://datascience.stackexchange.com/questions/1189
复制