前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
社区首页 >专栏 >MySQL选错索引导致的线上慢查询事故

MySQL选错索引导致的线上慢查询事故

原创
作者头像
蛮三刀酱
修改于 2020-07-31 01:58:46
修改于 2020-07-31 01:58:46
2.4K0
举报

前言

又和大家见面了!又两周过去了,我的云笔记里又多了几篇写了一半的文章草稿。有的是因为质量没有达到预期还准备再加点内容,有的则完全是一个灵感而已,内容完全木有。羡慕很多大佬们,一周能产出五六篇文章,给我两个肝我都不够。好了,不多说废话了...

最近在线上环境遇到了一次SQL慢查询引发的数据库故障,影响线上业务。经过排查后,确定原因是SQL在执行时,MySQL优化器选择了错误的索引(不应该说是“错误”,而是选择了实际执行耗时更长的索引)。在排查过程中,查阅了许多资料,也学习了下MySQL优化器选择索引的基本准则,在本文中进行解决问题思路的分享。本人MySQL了解深度有限,如果错误欢迎理性讨论和指正。

在这次事故中也能充分看出深入了解MySQL运行原理的重要性,这是遇到问题时能否独立解决问题的关键。 试想一个月黑风高的夜晚,公司线上突然挂了,而你的同事们都不在线,就你一个人有条件解决问题,这时候如果被工程师的基本功把你卡住了,就问你尴不尴尬...

本文的主要内容:

  • 故障描述
  • 问题原因排查
  • MySQL索引选择原理
  • 解决方案
  • 思考与总结

请大家多多支持我的原创技术公众号:后端技术漫谈

正文

故障描述

在7月24日11点线上某数据库突然收到大量告警,慢查询数超标,并且引发了连接数暴增,导致数据库响应缓慢,影响业务。看图表慢查询在高峰达到了每分钟14w次,在平时正常情况下慢查询数仅在两位数以下,如下图:

赶紧查看慢SQL记录,发现都是同一类语句导致的慢查询(隐私数据例如表名,我已经隐去):

代码语言:txt
AI代码解释
复制
select
  *
from
  sample_table
where
    1 = 1
    and (city_id = 565)
    and (type = 13)
order by
  id desc
limit
  0, 1

看起来语句很简单,没什么特别的。但是每个执行的查询时间达到了惊人的44s。

简直耸人听闻,这已经不是“慢”能形容的了...

接下来查看表数据信息,如下图:

可以看到表数据量较大,预估行数在83683240,也就是8000w左右,千万数据量的表

大致情况就是这样,下面进入排查问题的环节。

问题原因排查

首先当然要怀疑会不会该语句没走索引,查看建表DML中的索引:

代码语言:txt
AI代码解释
复制
KEY `idx_1` (`city_id`,`type`,`rank`),
KEY `idx_log_dt_city_id_rank` (`log_dt`,`city_id`,`rank`),
KEY `idx_city_id_type` (`city_id`,`type`)

请忽略idx_1和idx_city_id_type两个索引的重复,这都是历史遗留问题了。

可以看到是有idx_city_id_type和idx_1索引的,我们的查询条件是city_id和type,这两个索引都是能走到的。

但是,我们的查询条件真的只要考虑city_id和type吗?(机智的小伙伴应该注意到问题所在了,先往下讲,留给大家思考)

既然有索引,接下来就该看该语句实际有没有走到索引了,MySQL提供了Explain可以分析SQL语句。Explain 用来分析 SELECT 查询语句。

Explain比较重要的字段有:

  • select_type : 查询类型,有简单查询、联合查询、子查询等
  • key : 使用的索引
  • rows : 预计需要扫描的行数

更多详细Explain介绍可以参考:MySQL 性能优化神器 Explain 使用分析

我们使用Explain分析该语句:

代码语言:txt
AI代码解释
复制
select * from sample_table where city_id = 565 and type = 13 order by id desc limit 0,1

得到结果:

可以看出,虽然possiblekey有我们的索引,但是最后走了主键索引。而表是千万级别,并且该查询条件最后实际是返回的空数据,也就是MySQL在主键索引上实际检索时间很长,导致了慢查询。

我们可以使用force index(idx_city_id_type)让该语句选择我们设置的联合索引:

代码语言:txt
AI代码解释
复制
select * from sample_table force index(idx_city_id_type)  where ( ( (1 = 1) and (city_id = 565) ) and (type = 13) ) order by id desc limit 0, 1

这次明显执行的飞快,分析语句:

实际执行时间0.00175714s,走了联合索引后,不再是慢查询了。

问题找到了,总结下来就是:MySQL优化器认为在limit 1的情况下,走主键索引能够更快的找到那一条数据,并且如果走联合索引需要扫描索引后进行排序,而主键索引天生有序,所以优化器综合考虑,走了主键索引。实际上,MySQL遍历了8000w条数据也没找到那个天选之人(符合条件的数据),所以浪费了很多时间。

MySQL索引选择原理

优化器索引选择的准则

MySQL一条语句的执行流程大致如下图,而查询优化器则是选择索引的地方:

引用参考文献一段解释:

首先要知道,选择索引是MySQL优化器的工作。而优化器选择索引的目的,是找到一个最优的执行方案,并用最小的代价去执行语句。在数据库里面,扫描行数是影响执行代价的因素之一。扫描的行数越少,意味着访问磁盘数据的次数越少,消耗的CPU资源越少。当然,扫描行数并不是唯一的判断标准,优化器还会结合是否使用临时表、是否排序等因素进行综合判断。

总结下来,优化器选择有许多考虑的因素:扫描行数、是否使用临时表、是否排序等等

我们回头看刚才的两个explain截图:

走了主键索引的查询语句,rows预估行数1833,而强制走联合索引行数是45640,并且Extra信息中,显示需要Using filesort进行额外的排序。所以在不加强制索引的情况下,优化器选择了主键索引,因为它觉得主键索引扫描行数少,而且不需要额外的排序操作,主键索引天生有序。

rows是怎么预估出来的

同学们就要问了,为什么rows只有1833,明明实际扫描了整个主键索引啊,行数远远不止几千行。实际上explain的rows是MySQL预估的行数,是根据查询条件、索引和limit综合考虑出来的预估行数。

代码语言:txt
AI代码解释
复制
MySQL是怎样得到索引的基数的呢?这里,我给你简单介绍一下MySQL采样统计的方法。

为什么要采样统计呢?因为把整张表取出来一行行统计,虽然可以得到精确的结果,但是代价太高了,所以只能选择“采样统计”。

采样统计的时候,InnoDB默认会选择N个数据页,统计这些页面上的不同值,得到一个平均值,然后乘以这个索引的页面数,就得到了这个索引的基数。

而数据表是会持续更新的,索引统计信息也不会固定不变。所以,当变更的数据行数超过1/M的时候,会自动触发重新做一次索引统计。

在MySQL中,有两种存储索引统计的方式,可以通过设置参数innodb_stats_persistent的值来选择:

设置为on的时候,表示统计信息会持久化存储。这时,默认的N是20,M是10。
设置为off的时候,表示统计信息只存储在内存中。这时,默认的N是8,M是16。
由于是采样统计,所以不管N是20还是8,这个基数都是很容易不准的。

我们可以使用analyze table t命令,可以用来重新统计索引信息。但是这条命令生产环境需要联系DBA,所以我就不做实验了,大家可以自行实验。

索引要考虑 order by 的字段

为什么这么说?因为如果我这个表中的索引是city_id,typeid的联合索引,那优化器就会走这个联合索引,因为索引已经做好了排序。

更改limit大小能解决问题?

把limit数量调大会影响预估行数rows,进而影响优化器索引的选择吗?

答案是会。

我们执行limit 10

代码语言:txt
AI代码解释
复制
select * from sample_table where city_id = 565 and type = 13 order by id desc limit 0,10

图中rows变为了18211,增长了10倍。如果使用limit 100,会发生什么?

优化器选择了联合索引。初步估计是rows还会翻倍,所以优化器放弃了主键索引。宁愿用联合索引后排序,也不愿意用主键索引了。

为何突然出现异常慢查询

问:这个查询语句已经在线上稳定运行了非常长的时间,为何这次突然出现了慢查询?

答:以前的语句查询条件返回结果都不为空,limit1很快就能找到那条数据,返回结果。而这次代码中查询条件实际结果为空,导致了扫描了全部的主键索引。

解决方案

知道了MySQL为何选择这个索引的原因后,我们就可以根据上面的思路来列举出解决办法了。

主要有两个大方向:

  1. 强制指定索引
  2. 干涉优化器选择
强制选择索引:force index

就像上面我最开始的操作那样,我们直接使用force index,让语句走我们想要走的索引。

代码语言:txt
AI代码解释
复制
select * from sample_table force index(idx_city_id_type)  where ( ( (1 = 1) and (city_id = 565) ) and (type = 13) ) order by id desc limit 0, 1

这样做的优点是见效快,问题马上就能解决。

缺点也很明显:

  • 高耦合,这种语句写在代码里,会变得难以维护,如果索引名变化了,或者没有这个索引了,代码就要反复修改。属于硬编码。
  • 很多代码用框架封装了SQL,force index()并不容易加进去。

我们换一种办法,我们去引导优化器选择联合索引。

干涉优化器选择:增大limit

通过增大limit,我们可以让预估扫描行数快速增加,比如改成下面的limit 0, 1000

代码语言:txt
AI代码解释
复制
SELECT * FROM sample_table where city_id = 565 and type = 13 order by id desc LIMIT 0,1000

这样就会走上联合索引,然后排序,但是这样强行增长limit,其实总有种面向黑盒调参的感觉。我们还有更优美的解决方案吗?

干涉优化器选择:增加包含order by id字段的联合索引

我们这句慢查询使用的是order by id,但是我们却没有在联合索引中加入id字段,导致了优化器认为联合索引后还要排序,干脆就不太想走这个联合索引了。

我们可以新建city_id,typeid的联合索引,来解决这个问题。

这样也有一定的弊端,比如我这个表到了8000w数据,建立索引非常耗时,而且通常索引就有3.4个g,如果无限制的用索引解决问题,可能会带来新的问题。表中的索引不宜过多。

干涉优化器选择:写成子查询

还有什么办法?我们可以用子查询,在子查询里先走city_id和type的联合索引,得到结果集后在limit1选出第一条。

但是子查询使用有风险,一版DBA也不建议使用子查询,会建议大家在代码逻辑中完成复杂的查询。当然我们这句并不复杂啦~

代码语言:txt
AI代码解释
复制
Select * From sample_table Where id in (Select id From `newhome_db`.`af_hot_price_region` where (city_id = 565 and type = 13)) limit 0, 1
还有很多解决办法...

SQL优化是个很大的工程,我们还有非常多的办法能够解决这句慢查询问题,这里就不一一展开了。留给大家做为思考题了。

总结

本文带大家回顾了一次MySQL优化器选错索引导致的线上慢查询事故,可以看出MySQL优化器对于索引的选择并不单单依靠某一个标准,而是一个综合选择的结果。我自己也对这方面了解不深入,还需要多多学习,争取能够好好的做一个索引选择的总结(挖坑)。不说了,拿起巨厚的《高性能MySQL》,开始...

压住我的泡面...

最后做个文章总结:

  • 该慢查询语句中使用order by id导致优化器在主键索引和city_id和type的联合索引中有所取舍,最终导致选择了更慢的索引。
  • 可以通过强制指定索引,建立包含id的联合索引,增大limit等方式解决问题。
  • 平时开发时,尤其是对于特大数据量的表,要注意SQL语句的规范和索引的建立,避免事故的发生。

参考

《高性能MySQL》

MySQL优化器 limit影响的case:

https://www.cnblogs.com/xpchild/p/3878417.html

mysql中走与不走索引的情况汇集(待全量实验):

https://www.cnblogs.com/gxyandwmm/p/13363100.html

MySQL ORDER BY主键id加LIMIT限制走错索引:

https://www.jianshu.com/p/caf5818eca81

【业务学习】关于MySQL order by limit 走错索引的探讨:

https://segmentfault.com/a/1190000020399424

MySQL为什么有时候会选错索引?:

https://www.cnblogs.com/a-phper/p/10313888.html

关注我

我是一名后端开发工程师。主要关注后端开发,数据安全,爬虫,物联网边缘计算等方向,欢迎交流。

原创文章主要内容

  • 后端开发
  • Java面试
  • 设计模式/数据结构/算法题解
  • 爬虫/边缘计算/物联网
  • 读书笔记/逸闻趣事/程序人生

个人公众号:后端技术漫谈

如果文章对你有帮助,不妨收藏,转发,在看起来~

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
一次关于 Mysql 索引优化的思考
执行SQL-1,显示耗时 9.35sec。显然是不乐观的一个值,查看其执行计划(explain):
逆锋起笔
2021/04/07
3410
一次关于 Mysql 索引优化的思考
19条MySQL优化准则
MySQL对于IN做了相应的优化,即将IN中的常量全部存储在一个数组里面,而且这个数组是排好序的。但是如果数值较多,产生的消耗也是比较大的。再例如:select id from t where num in(1,2,3) 对于连续的数值,能用between就不要用in了;再或者使用连接来替换。
Kevin_Zhang
2019/03/22
8640
19条MySQL优化准则
【MySQL-24】万字全面解析<索引>——【介绍&语法&性能分析&使用规则】
MySQL的索引是在存储引擎层实现的,不同的存储引擎有不同的结构,主要包含以下几种:
YY的秘密代码小屋
2024/09/09
1810
【MySQL-24】万字全面解析<索引>——【介绍&语法&性能分析&使用规则】
MySQL慢查询日志实践
慢日志查询的主要功能就是,记录sql语句中超过设定的时间阈值的查询语句。例如,一条查询sql语句,我们设置的阈值为1s,当这条查询语句的执行时间超过了1s,则将被写入到慢查询配置的日志中. 慢查询主要是为了我们做sql语句的优化功能.
兔云小新LM
2019/07/22
8340
让MySQL速度提升3倍的19种优化方式
MySQL对于IN做了相应的优化,即将IN中的常量全部存储在一个数组里面,而且这个数组是排好序的。但是如果数值较多,产生的消耗也是比较大的。再例如:select id from table_name where num in(1,2,3) 对于连续的数值,能用 between 就不要用 in 了;再或者使用连接来替换。
数据和云
2019/05/20
2.5K0
让MySQL速度提升3倍的19种优化方式
MySQL索引选择底层原理探究-从一个慢查询说起 | 技术创作特训营第一期
在生产环境中收到一个接口耗时预警, 通过监控发现, 接口耗时达到了89s, 最终定位到了是因为触发了一个sql慢查询场景.
一笑而过zdp
2023/08/25
5.1K28
MySQL索引选择底层原理探究-从一个慢查询说起 | 技术创作特训营第一期
Mysql explain命令详解
在 MySQL 中,EXPLAIN 语句用于获取关于查询执行计划的信息,模拟优化器执行SQL查询语句,帮助我们分析SQL查询的瓶颈。
一杯茶Ja
2024/09/25
2930
深入剖析 MySQL 索引和 SQL 调优实战(珍藏版)
MySQL支持诸多存储引擎,而各种存储引擎对索引的支持也各不相同,因此MySQL数据库支持多种索引类型,如BTree索引,哈希索引,全文索引等等。
lyb-geek
2019/11/08
7260
Cardinality统计取值不准确导致MYSQL选错索引
Non_unique:如果是唯一索引,则值为 0,如果可以有重复值,则值为 1 Key_name:索引名字 Seq_in_index:索引中的列序号,比如联合索引 idx_a_b_c (a,b,c) ,那么三个字段分别对应 1,2,3 Column_name:字段名 Collation:字段在索引中的排序方式,A 表示升序,NULL 表示未排序 Cardinality:索引中不重复记录数量的预估值,该值等会儿会详细讲解 Sub_part:如果是前缀索引,则会显示索引字符的数量;如果是对整列进行索引,则该字段值为 NULL Null:如果列可能包含空值,则该字段为 YES;如果不包含空值,则该字段值为 ’ ’ Index_type:索引类型,包括 BTREE、FULLTEXT、HASH、RTREE 等
友儿
2022/09/11
8500
三高Mysql - Mysql索引和查询优化(偏实战部分)
实战部分挑选一些比较常见的情况,事先强调个人使用的是mysql 8.0.26,所以不同版本如果出现不同测试结果也不要惊讶,新版本会对于过去一些不会优化的查询进行优化。
阿东
2022/04/08
7780
三高Mysql - Mysql索引和查询优化(偏实战部分)
MySQL底层概述—7.优化原则及慢查询
使用Explain关键字可以模拟查询优化器来执行SQL查询语句,从而知道MySQL是如何处理SQL语句的,从而分析出查询语句和表结构的性能瓶颈。
东阳马生架构
2025/02/12
2260
SQL优化思路+经典案例分析
SQL调优这块呢,大厂面试必问的。最近金九银十嘛,所以整理了SQL的调优思路,并且附几个经典案例分析。
捡田螺的小男孩
2023/02/24
9370
SQL优化思路+经典案例分析
SQL优化
此优化方案指的是通过优化 SQL 语句以及索引来提高 MySQL 数据库的运行效率,具体内容如下:
时代疯
2021/07/22
7740
【知识】MySQL索引原理及慢查询优化
MySQL用来加快查询的技术很多,其中最重要的是索引。通常索引能够快速提高查询速度。如果不适用索引,MYSQL必须从第一条记录开始然后读完整个表直到找出相关的行。表越大,花费的时间越多。但也不全是这样。本文讨论索引是什么以及如何使用索引来改善性能,以及索引可能降低性能的情况。
辉哥
2021/06/10
1.1K0
【知识】MySQL索引原理及慢查询优化
MySQL索引B+树、执行计划explain、索引覆盖最左匹配、慢查询问题
在数据库中,为了提高查询效率和数据的持久化存储,在设计索引时通常会采用B树或B+树。本文将对B树和B+树进行详细介绍,并解释为什么MySQL选择B+树作为索引结构。
青山师
2023/05/05
4690
SQL学习笔记五之MySQL索引原理与慢查询优化
一般的应用系统,读写比例在10:1左右,而且插入操作和一般的更新操作很少出现性能问题,在生产环境中,我们遇到最多的,也是最容易出问题的,还是一些复杂的查询操作,因此对查询语句的优化显然是重中之重。说起加速查询,就不得不提到索引了。
Jetpropelledsnake21
2019/02/15
8900
高效处理MySQL慢查询分析和性能优化
要开启慢查询日志(默认是关闭的),通过slow_query_log参数进行设置。在MySQL命令终端中执行以下命令:
不惑
2024/09/18
7060
高效处理MySQL慢查询分析和性能优化
盘点MySQL慢查询的12个原因
日常开发中,我们经常会遇到数据库慢查询。那么导致数据慢查询都有哪些常见的原因呢?今天田螺哥就跟大家聊聊导致MySQL慢查询的12个常见原因,以及对应的解决方法。
捡田螺的小男孩
2023/02/24
1.5K0
盘点MySQL慢查询的12个原因
MySQL慢查询,一口从天而降的锅!
  记得那是一条查询SQL,数据量万级时还保持在0.2秒内,随着某一段时间数据猛增,耗时一度达到了2-3秒!没有命中索引,导致全表扫描。explain 中extra显示:Using where; Using temporary; Using filesort,被迫使用了临时表排序,由于是高频查询,并发一起来很快就把DB线程池打满了,导致大量查询请求堆积,DB服务器cpu长时间100%+,大量请求timeout。。最终系统崩溃。老板登场~
陈哈哈
2021/10/13
5960
12个MySQL慢查询的原因分析「建议收藏」
很多时候,我们的慢查询,都是因为没有加索引。如果没有加索引的话,会导致全表扫描的。因此,应考虑在 where 的条件列,建立索引,尽量避免全表扫描。
全栈程序员站长
2022/11/04
1.8K0
相关推荐
一次关于 Mysql 索引优化的思考
更多 >
LV.1
Alibaba高级后端开发工程师
领券
社区富文本编辑器全新改版!诚邀体验~
全新交互,全新视觉,新增快捷键、悬浮工具栏、高亮块等功能并同时优化现有功能,全面提升创作效率和体验
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档
查看详情【社区公告】 技术创作特训营有奖征文