前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >机器学习-21:MachineLN之SVM源码

机器学习-21:MachineLN之SVM源码

作者头像
MachineLP
发布2022-05-09 14:55:44
2900
发布2022-05-09 14:55:44
举报
文章被收录于专栏:小鹏的专栏

你要的答案或许都在这里:小鹏的博客目录

我想说:

其实很多事情一定要找好自己的节奏,因为你会发现你不会的东西太多了,千万不要被带跑了。

上两节:MachineLN之SVM(1)MachineLN之SVM(2),讲述了SVM的原理,今天看一下带详细注释的源码 和 tensorflow使用梯度下降求解svm参数:切记好代码都是敲出来的,并且越敲越有感觉,本想着还是截图, 但是代码太多了

代码语言:javascript
复制
from numpy import *
from time import sleep
# 依旧是数据的准备
def loadDataSet(fileName):
    # 定义保存样本和标签的列表;
    dataMat = []; labelMat = [a]
    # 打开数据文件
    fr = open(fileName)
    # 读取文件中的每一行;
    for line in fr.readlines():
        # 将每行的数据通过制表符分开;
        lineArr = line.strip().split('\t')
        # 前两个为样本数据数据,第二个为标签数据;
        dataMat.append([float(lineArr[0]), float(lineArr[1])])
        labelMat.append(float(lineArr[2]))
    # 返回样本和标签,用于SVM的训练;
    return dataMat,labelMat
# 用于产生一个随机数,用于下面随机获取一个样本;
def selectJrand(i,m):
    j=i #we want to select any J not equal to i
    while (j==i):
        j = int(random.uniform(0,m))
    return j
# 相当于给定alpha一个范围,大于最大值的话,赋值为最大值,小于最小值的话,就赋值最小值; 
def clipAlpha(aj,H,L):
    if aj > H: 
        aj = H
    if L > aj:
        aj = L
    return aj
代码语言:javascript
复制
# 简化版的smo算法求alpha和b;
# 下面是smo算法的流程;
# 此简化版的smo是严格按照上一节MachineLN之SVM(2)的手撕smo来的;
def smoSimple(dataMatIn, classLabels, C, toler, maxIter):
    # 将样本集转化为矩阵格式, 将样本的标签也转化为矩阵格式和,用于后面的矩阵运算, 主要两个地方用到:预测和eta。 
    dataMatrix = mat(dataMatIn); labelMat = mat(classLabels).transpose()
    # 初始化偏置,然后获取矩阵的行数和列数, 行数用来输出初始化下面的alpha. 
    b = 0; m,n = shape(dataMatrix)
    # 初始化alphas为为m行1列;
    alphas = mat(zeros((m,1)))
    iter = 0
    # 定义迭代次数
    while (iter < maxIter):
        alphaPairsChanged = 0
        # 遍历每个样本;
        for i in range(m):
            # 计算第i个样本的预测标签; 用于计算差值; 
            fXi = float(multiply(alphas,labelMat).T*(dataMatrix*dataMatrix[i,:].T)) + b
            # 计算两个的差值用于 KKT 条件的判断
            Ei = fXi - float(labelMat[i])#if checks if an example violates KKT conditions
            # 正间隔 和 负间隔 都会被测试; 并且还要保证 alpha的值在 [0, C]之间
            if ((labelMat[i]*Ei < -toler) and (alphas[i] < C)) or ((labelMat[i]*Ei > toler) and (alphas[i] > 0)):
                # 从 i到m中随机选择一个样本
                j = selectJrand(i,m)
                # 计算此样本的预测值
                fXj = float(multiply(alphas,labelMat).T*(dataMatrix*dataMatrix[j,:].T)) + b
                # 预测值和真实值的差值: 用于后面计算alpha. 
                Ej = fXj - float(labelMat[j])
                # 用于保存未更新的alpha,方便b的计算;
                alphaIold = alphas[i].copy(); alphaJold = alphas[j].copy();
                # 计算不同的情况下 aphpa 的最小值和最大值, 这里可以参考手撕smo;
                if (labelMat[i] != labelMat[j]):
                    L = max(0, alphas[j] - alphas[i])
                    H = min(C, C + alphas[j] - alphas[i])
                else:
                    L = max(0, alphas[j] + alphas[i] - C)
                    H = min(C, alphas[j] + alphas[i])
                if L==H: print "L==H"; continue
                # 下面就是计算alpha2 和 进行剪枝后,求alpha1;
                eta = 2.0 * dataMatrix[i,:]*dataMatrix[j,:].T - dataMatrix[i,:]*dataMatrix[i,:].T - dataMatrix[j,:]*dataMatrix[j,:].T
                if eta >= 0: print "eta>=0"; continue
                alphas[j] -= labelMat[j]*(Ei - Ej)/eta
                alphas[j] = clipAlpha(alphas[j],H,L)
                if (abs(alphas[j] - alphaJold) < 0.00001): print "j not moving enough"; continue
                alphas[i] += labelMat[j]*labelMat[i]*(alphaJold - alphas[j])#update i by the same amount as j
                # 更新参数b1, b2, 和手撕smo算法流程一样;
                b1 = b - Ei- labelMat[i]*(alphas[i]-alphaIold)*dataMatrix[i,:]*dataMatrix[i,:].T - labelMat[j]*(alphas[j]-alphaJold)*dataMatrix[i,:]*dataMatrix[j,:].T
                b2 = b - Ej- labelMat[i]*(alphas[i]-alphaIold)*dataMatrix[i,:]*dataMatrix[j,:].T - labelMat[j]*(alphas[j]-alphaJold)*dataMatrix[j,:]*dataMatrix[j,:].T
                # 根据参数b1, b2得到b;
                if (0 < alphas[i]) and (C > alphas[i]): b = b1
                elif (0 < alphas[j]) and (C > alphas[j]): b = b2
                else: b = (b1 + b2)/2.0
                alphaPairsChanged += 1
                print "iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)
        if (alphaPairsChanged == 0): iter += 1
        else: iter = 0
        print "iteration number: %d" % iter
    return b,alphas
代码语言:javascript
复制
# 下面就是核函数:线性核函数 和 rbf核函数
def kernelTrans(X, A, kTup): #calc the kernel or transform data to a higher dimensional space
    m,n = shape(X)
    K = mat(zeros((m,1)))
    if kTup[0]=='lin': K = X * A.T   # 线性核
    elif kTup[0]=='rbf':
        for j in range(m):
            deltaRow = X[j,:] - A
            K[j] = deltaRow*deltaRow.T
        K = exp(K/(-1*kTup[1]**2))  # rbf核
    else: raise NameError('Houston We Have a Problem -- \
    That Kernel is not recognized')
    return K
代码语言:javascript
复制
# 利用完整的 Platt SMO算法加速运算;
# 与简化版相比:实现alpha的更改和代数运算的优化环节一摸一样,在优化过程中唯一不同的就是选择alpha的方式。
# 用于设置模型中的数据和参数: 训练样本、标签、学习率、KKT条件的参数设置值、alpha、b、核函数的参数;
class optStruct:
    def __init__(self,dataMatIn, classLabels, C, toler, kTup):  # Initialize the structure with the parameters 
        self.X = dataMatIn
        self.labelMat = classLabels
        self.C = C
        self.tol = toler
        self.m = shape(dataMatIn)[0]
        self.alphas = mat(zeros((self.m,1)))
        self.b = 0
        self.eCache = mat(zeros((self.m,2)))  # 用于误差缓存
        self.K = mat(zeros((self.m,self.m)))
        for i in range(self.m):
            self.K[:,i] = kernelTrans(self.X, self.X[i,:], kTup)
代码语言:javascript
复制
# 计算预测值和真实值的标签的差值;        
def calcEk(oS, k):
    fXk = float(multiply(oS.alphas,oS.labelMat).T*oS.K[:,k] + oS.b)
    Ek = fXk - float(oS.labelMat[k])
    return Ek
# 在选择第一个alpha值后,算法会通过内循环来选择第二个alpha值,在优化过程中,会通过最大步长的方式来获得第二个alpha值
# 选择合适的第二个样本; 计算Ej 
def selectJ(i, oS, Ei):         
    maxK = -1; maxDeltaE = 0; Ej = 0
    # 将其放在Ei缓存区。
    oS.eCache[i] = [1,Ei]  #set valid #choose the alpha that gives the maximum delta E
    # 返回的是非零E值所对应的alpha值,而不是E本身,程序会在所有的值上进行循环并选择其中使得改变最大的那个值;
    # else中, 在第一次的循环的话, 那么就随机选择一个alpha值。
    validEcacheList = nonzero(oS.eCache[:,0].A)[0]
    if (len(validEcacheList)) > 1:
        for k in validEcacheList:   
            if k == i: continue 
            Ek = calcEk(oS, k)
            deltaE = abs(Ei - Ek)
            if (deltaE > maxDeltaE):
                maxK = k; maxDeltaE = deltaE; Ej = Ek
        return maxK, Ej
    else:   
        j = selectJrand(i, oS.m)
        Ej = calcEk(oS, j)
    return j, Ej
# 更新选取新样本后的E值
def updateEk(oS, k):#after any alpha has changed update the new value in the cache
    Ek = calcEk(oS, k)
    oS.eCache[k] = [1,Ek]
代码语言:javascript
复制
# 下面的算法流程和简化版的smo流程差不多
def innerL(i, oS):
    Ei = calcEk(oS, i)
    if ((oS.labelMat[i]*Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or ((oS.labelMat[i]*Ei > oS.tol) and (oS.alphas[i] > 0)):
        j,Ej = selectJ(i, oS, Ei) #this has been changed from selectJrand
        alphaIold = oS.alphas[i].copy(); alphaJold = oS.alphas[j].copy();
        if (oS.labelMat[i] != oS.labelMat[j]):
            L = max(0, oS.alphas[j] - oS.alphas[i])
            H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i])
        else:
            L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C)
            H = min(oS.C, oS.alphas[j] + oS.alphas[i])
        if L==H: print "L==H"; return 0
        eta = 2.0 * oS.K[i,j] - oS.K[i,i] - oS.K[j,j] #changed for kernel
        if eta >= 0: print "eta>=0"; return 0
        oS.alphas[j] -= oS.labelMat[j]*(Ei - Ej)/eta
        oS.alphas[j] = clipAlpha(oS.alphas[j],H,L)
        updateEk(oS, j) #added this for the Ecache
        if (abs(oS.alphas[j] - alphaJold) < 0.00001): print "j not moving enough"; return 0
        oS.alphas[i] += oS.labelMat[j]*oS.labelMat[i]*(alphaJold - oS.alphas[j])#update i by the same amount as j
        updateEk(oS, i) #added this for the Ecache                    #the update is in the oppostie direction
        b1 = oS.b - Ei- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,i] - oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[i,j]
        b2 = oS.b - Ej- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,j]- oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[j,j]
        if (0 < oS.alphas[i]) and (oS.C > oS.alphas[i]): oS.b = b1
        elif (0 < oS.alphas[j]) and (oS.C > oS.alphas[j]): oS.b = b2
        else: oS.b = (b1 + b2)/2.0
        return 1
    else: return 0
代码语言:javascript
复制
# Platt AMO算法
def smoP(dataMatIn, classLabels, C, toler, maxIter,kTup=('lin', 0)):    #full Platt SMO
    oS = optStruct(mat(dataMatIn),mat(classLabels).transpose(),C,toler, kTup)
    iter = 0
    entireSet = True; alphaPairsChanged = 0
    while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)):
        alphaPairsChanged = 0
        if entireSet:   #go over all
            for i in range(oS.m):        
                alphaPairsChanged += innerL(i,oS)
                print "fullSet, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)
            iter += 1
        else:#go over non-bound (railed) alphas
            nonBoundIs = nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0]
            for i in nonBoundIs:
                alphaPairsChanged += innerL(i,oS)
                print "non-bound, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)
            iter += 1
        if entireSet: entireSet = False #toggle entire set loop
        elif (alphaPairsChanged == 0): entireSet = True  
        print "iteration number: %d" % iter
    return oS.b,oS.alphas
# 通过计算的alpha计算权重w值
def calcWs(alphas,dataArr,classLabels):
    X = mat(dataArr); labelMat = mat(classLabels).transpose()
    m,n = shape(X)
    w = zeros((n,1))
    # 计算 w
    for i in range(m):
        w += multiply(alphas[i]*labelMat[i],X[i,:].T)
    return w
代码语言:javascript
复制
# 使用rbf核的svm,进行测试
def testRbf(k1=1.3):
    dataArr,labelArr = loadDataSet('testSetRBF.txt')
    # 通过Platt AMO算法计算alpha和b的值
    b,alphas = smoP(dataArr, labelArr, 200, 0.0001, 10000, ('rbf', k1)) #C=200 important
    # 
    datMat=mat(dataArr); labelMat = mat(labelArr).transpose()
    # 构建支持向量矩阵, 选择 0<alpha<C
    svInd=nonzero(alphas.A>0)[0]
    # 仅选支持向量用于kernel相乘
    sVs=datMat[svInd] #get matrix of only support vectors
    labelSV = labelMat[svInd];
    print "there are %d Support Vectors" % shape(sVs)[0]
    m,n = shape(datMat)
    errorCount = 0
    # 下面是计算在训练集的错误率
    for i in range(m):
        kernelEval = kernelTrans(sVs,datMat[i,:],('rbf', k1))
        predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b
        if sign(predict)!=sign(labelArr[i]): errorCount += 1
    print "the training error rate is: %f" % (float(errorCount)/m)
    # 下面是求在测试集的错误率
    dataArr,labelArr = loadDataSet('testSetRBF2.txt')
    errorCount = 0
    datMat=mat(dataArr); labelMat = mat(labelArr).transpose()
    m,n = shape(datMat)
    for i in range(m):
        kernelEval = kernelTrans(sVs,datMat[i,:],('rbf', k1))
        predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b
        if sign(predict)!=sign(labelArr[i]): errorCount += 1    
    print "the test error rate is: %f" % (float(errorCount)/m)   
代码语言:javascript
复制
# 下面是手写体识别的svm测试
def img2vector(filename):
    returnVect = zeros((1,1024))
    fr = open(filename)
    for i in range(32):
        lineStr = fr.readline()
        for j in range(32):
            returnVect[0,32*i+j] = int(lineStr[j])
    return returnVect
def loadImages(dirName):
    from os import listdir
    hwLabels = []
    trainingFileList = listdir(dirName)           #load the training set
    m = len(trainingFileList)
    trainingMat = zeros((m,1024))
    for i in range(m):
        fileNameStr = trainingFileList[i]
        fileStr = fileNameStr.split('.')[0]     #take off .txt
        classNumStr = int(fileStr.split('_')[0])
        if classNumStr == 9: hwLabels.append(-1)
        else: hwLabels.append(1)
        trainingMat[i,:] = img2vector('%s/%s' % (dirName, fileNameStr))
    return trainingMat, hwLabels    
def testDigits(kTup=('rbf', 10)):
    dataArr,labelArr = loadImages('trainingDigits')
    b,alphas = smoP(dataArr, labelArr, 200, 0.0001, 10000, kTup)
    datMat=mat(dataArr); labelMat = mat(labelArr).transpose()
    svInd=nonzero(alphas.A>0)[0]
    sVs=datMat[svInd] 
    labelSV = labelMat[svInd];
    print "there are %d Support Vectors" % shape(sVs)[0]
    m,n = shape(datMat)
    errorCount = 0
    for i in range(m):
        kernelEval = kernelTrans(sVs,datMat[i,:],kTup)
        predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b
        if sign(predict)!=sign(labelArr[i]): errorCount += 1
    print "the training error rate is: %f" % (float(errorCount)/m)
    dataArr,labelArr = loadImages('testDigits')
    errorCount = 0
    datMat=mat(dataArr); labelMat = mat(labelArr).transpose()
    m,n = shape(datMat)
    for i in range(m):
        kernelEval = kernelTrans(sVs,datMat[i,:],kTup)
        predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b
        if sign(predict)!=sign(labelArr[i]): errorCount += 1    
    print "the test error rate is: %f" % (float(errorCount)/m) 

tensorflow梯度下降法求解模型参数:

代码语言:javascript
复制
# SVM梯度下降进参数求解
import matplotlib.pyplot as plt  
import numpy as np  
import tensorflow as tf  
from sklearn import datasets  
from tensorflow.python.framework import ops  
ops.reset_default_graph()  
# Create graph  
sess = tf.Session()  
# Load the data  
# iris.data = [(Sepal Length, Sepal Width, Petal Length, Petal Width)]  
iris = datasets.load_iris()  
x_vals = np.array([[x[0], x[3]] for x in iris.data])  
y_vals = np.array([1 if y==0 else -1 for y in iris.target])  
# Split data into train/test sets  
train_indices = np.random.choice(len(x_vals), round(len(x_vals)*0.8), replace=False)  
test_indices = np.array(list(set(range(len(x_vals))) - set(train_indices)))  
x_vals_train = x_vals[train_indices]  
x_vals_test = x_vals[test_indices]  
y_vals_train = y_vals[train_indices]  
y_vals_test = y_vals[test_indices]  
# Declare batch size  
batch_size = 100  
# Initialize placeholders  
x_data = tf.placeholder(shape=[None, 2], dtype=tf.float32)  
y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32)  
# Create variables for linear regression  
A = tf.Variable(tf.random_normal(shape=[2,1]))  
b = tf.Variable(tf.random_normal(shape=[1,1]))  
# Declare model operations  
model_output = tf.subtract(tf.matmul(x_data, A), b)  
# 定义 hinge loss function
# Declare vector L2 'norm' function squared  
l2_norm = tf.reduce_sum(tf.square(A))  
# Declare loss function  
# Loss = max(0, 1-pred*actual) + alpha * L2_norm(A)^2  
# L2 regularization parameter, alpha  
alpha = tf.constant([0.01])  
# Margin term in loss  
classification_term = tf.reduce_mean(tf.maximum(0., tf.subtract(1., tf.multiply(model_output, y_target))))  
# Put terms together  
loss = tf.add(classification_term, tf.multiply(alpha, l2_norm))  
# Declare prediction function  
prediction = tf.sign(model_output)  
accuracy = tf.reduce_mean(tf.cast(tf.equal(prediction, y_target), tf.float32))  
# Declare optimizer  
my_opt = tf.train.GradientDescentOptimizer(0.01)  
train_step = my_opt.minimize(loss)  
# Initialize variables  
init = tf.global_variables_initializer()  
sess.run(init)  
# Training loop  
loss_vec = []  
train_accuracy = []  
test_accuracy = []  
for i in range(500):  
    rand_index = np.random.choice(len(x_vals_train), size=batch_size)  
    rand_x = x_vals_train[rand_index]  
    rand_y = np.transpose([y_vals_train[rand_index]])  
    sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y})  
    temp_loss = sess.run(loss, feed_dict={x_data: rand_x, y_target: rand_y})  
    loss_vec.append(temp_loss)  
    train_acc_temp = sess.run(accuracy, feed_dict={x_data: x_vals_train, y_target: np.transpose([y_vals_train])})  
    train_accuracy.append(train_acc_temp)  
    test_acc_temp = sess.run(accuracy, feed_dict={x_data: x_vals_test, y_target: np.transpose([y_vals_test])})  
    test_accuracy.append(test_acc_temp)  
    if (i+1)%100==0:  
        print('Step #' + str(i+1) + ' A = ' + str(sess.run(A)) + ' b = ' + str(sess.run(b)))  
        print('Loss = ' + str(temp_loss))  
# Extract coefficients  
[[a1], [a2]] = sess.run(A)  
[[b]] = sess.run(b)  
slope = -a2/a1  
y_intercept = b/a1  
# Extract x1 and x2 vals  
x1_vals = [d[1] for d in x_vals]  
# Get best fit line  
best_fit = []  
for i in x1_vals:  
  best_fit.append(slope*i+y_intercept)  
# Separate I. setosa  
setosa_x = [d[1] for i,d in enumerate(x_vals) if y_vals[i]==1]  
setosa_y = [d[0] for i,d in enumerate(x_vals) if y_vals[i]==1]  
not_setosa_x = [d[1] for i,d in enumerate(x_vals) if y_vals[i]==-1]  
not_setosa_y = [d[0] for i,d in enumerate(x_vals) if y_vals[i]==-1]  
# Plot data and line  
plt.plot(setosa_x, setosa_y, 'o', label='I. setosa')  
plt.plot(not_setosa_x, not_setosa_y, 'x', label='Non-setosa')  
plt.plot(x1_vals, best_fit, 'r-', label='Linear Separator', linewidth=3)  
plt.ylim([0, 10])  
plt.legend(loc='lower right')  
plt.title('Sepal Length vs Pedal Width')  
plt.xlabel('Pedal Width')  
plt.ylabel('Sepal Length')  
plt.show()  
# Plot train/test accuracies  
plt.plot(train_accuracy, 'k-', label='Training Accuracy')  
plt.plot(test_accuracy, 'r--', label='Test Accuracy')  
plt.title('Train and Test Set Accuracies')  
plt.xlabel('Generation')  
plt.ylabel('Accuracy')  
plt.legend(loc='lower right')  
plt.show()  
# Plot loss over time  
plt.plot(loss_vec, 'k-')  
plt.title('Loss per Generation')  
plt.xlabel('Generation')  
plt.ylabel('Loss')  
plt.show()  

推荐阅读:

1. 机器学习-1:MachineLN之三要素

2. 机器学习-2:MachineLN之模型评估

3. 机器学习-3:MachineLN之dl

4. 机器学习-4:DeepLN之CNN解析

5. 机器学习-5:DeepLN之CNN权重更新(笔记)

6. 机器学习-6:DeepLN之CNN源码

7. 机器学习-7:MachineLN之激活函数

8. 机器学习-8:DeepLN之BN

9. 机器学习-9:MachineLN之数据归一化

10. 机器学习-10:MachineLN之样本不均衡

11. 机器学习-11:MachineLN之过拟合

12. 机器学习-12:MachineLN之优化算法

13. 机器学习-13:MachineLN之kNN

14. 机器学习-14:MachineLN之kNN源码

15. 机器学习-15:MachineLN之感知机

16. 机器学习-16:MachineLN之感知机源码

17. 机器学习-17:MachineLN之逻辑回归

18. 机器学习-18:MachineLN之逻辑回归源码

19. 机器学习-19:MachineLN之SVM(1)

20. 机器学习-20:MachineLN之SVM(2)

21. 机器学习-21:MachineLN之SVM源码

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2018-02-01,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
腾讯云 TI 平台
腾讯云 TI 平台(TencentCloud TI Platform)是基于腾讯先进 AI 能力和多年技术经验,面向开发者、政企提供的全栈式人工智能开发服务平台,致力于打通包含从数据获取、数据处理、算法构建、模型训练、模型评估、模型部署、到 AI 应用开发的产业 + AI 落地全流程链路,帮助用户快速创建和部署 AI 应用,管理全周期 AI 解决方案,从而助力政企单位加速数字化转型并促进 AI 行业生态共建。腾讯云 TI 平台系列产品支持公有云访问、私有化部署以及专属云部署。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档