Loading [MathJax]/jax/output/CommonHTML/config.js
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >人脸检测与识别的趋势和分析

人脸检测与识别的趋势和分析

作者头像
计算机视觉研究院
发布于 2019-05-13 10:13:44
发布于 2019-05-13 10:13:44
1.4K0
举报

看上图是不是想到10年12月7日那次历史性的詹韦连线,时隔8年我们有一次看到,但不是那个自信张开双手抛开,而是选择回头,可能这个画面,以后再也看不到了。希望我们牢记03黄金给我们90后留下的深刻记忆,向他们salute。

从上图,还能看到现在火的无法用形容词去修辞的技术之一了,那就是人脸检测与识别。这方面的知识有得到大家的认可和对其有很大的兴趣,所以今天再一次来分享下这类知识,让已入门的你更加深入理解,让刚入门及想要入门的你有一个好的开端与认知,请你认真开始吧!

人脸检测与识别技术已经被研究很久了,除此之外还有人脸配准、对齐、搜索、比对等技术,主要我们现实生活的需求,越来越需要这样的技术。现在打开Google的学术搜索,输入“Face Detect”,估计大家都能够想到,都是五花八门的经典乃至最新文章,最近的AAAI2019也举办的非常成功,得到了更过的人的关注!

不好意思,跑偏了。。。

让我开始说说人脸这个技术,真的是未来不可估计的人工智能技术,不知道未来会有多少企业为了这个技术潜心研究,人类是多么依赖及需要它,现在就来看看最近的技术和未来的发展吧!我先大概说下该领域遇到的一些问题:

1

图像质量:人脸识别系统的主要要求是期望高质量的人脸图像,而质量好的图像则在期望条件下被采集,图像质量对于提取图像特征很重要,因此,即使是最好的识别算法也会受图像质量下降的影响。

2

照明问题:同一张脸因照明变化而出现不同,照明可以彻底改变物体的外观。

3

姿势变化:从正面获取,姿势变化会产生许多照片,姿态变化难以准确识别人脸。

4

面部形状/纹理随着时间推移的变化:有可能随着时间的推移,脸的形状和纹理可能会发生变化。

5

相机与人脸的距离:如果图像是从远处拍摄的,有时从较长的距离捕获的人脸将会遭遇质量低劣和噪音的影响;

6

遮挡:用户脸部可能会遮挡,被其他人或物体(如眼镜等)遮挡,在这种情况下很难识别这些采集的脸。

Deep Learning还没有出现之前,大家都是在用传统机器学习算法和统计学算法来对以上问题进行研究,仔细想想,真的好厉害,能想出那么多经典的算法,下面我先简单介绍几个:

基于Adaboost人脸检测

Adaboost人脸检测算法,是基于积分图、级联检测器和Adaboost算法的方法,该方法能够检测出正面人脸且检测速度快。其核心思想是自动从多个弱分类器的空间中挑选出若干个分类器,构成一个分类能力很强的强分类器。

  • 缺点:而在复杂背景中,AdaBoost人脸检测算法容易受到复杂环境的影响,导致检测结果并不稳定,极易将类似人脸区域误检为人脸,误检率较高。

基于特征方法的人脸检测

基于特征的方法实质就是利用人脸的等先验知识导出的规则进行人脸检测。

① 边缘和形状特征:人脸及人脸器官具有典型的边缘和形状特征,如人脸轮廓、眼睑轮廓、虹膜轮廓、嘴唇轮廓等都可以近似为常见的几何单元;

② 纹理特征:人脸具有特定的纹理特征,纹理是在图上表现为灰度或颜色分布的某种规律性,这种规律性在不同类别的纹理中有其不同特点;

③ 颜色特征:人脸的皮肤颜色是人脸表面最为显著的特征之一,目前主要有RGB,HSV,YCbCr,YIQ,HIS等彩色空间模型被用来表示人脸的肤色,从而进行基于颜色信息的人脸检测方法的研究。

基于模板的方法

基于模板匹配的方法的思路就是通过计算人脸模板和待检测图像之间的相关性来实现人脸检测功能的,按照人脸模型的类型可以分为两种情况:

① 基于通用模板的方法,这种方法主要是使用人工定义的方法来给出人脸通用模板。对于待检测的人脸图像,分别计算眼睛,鼻子,嘴等特征同人脸模板的相关性,由相关性的大小来判断是否存在人脸。通用模板匹配方法的优点是算法简单,容易实现,但是它也有自身缺点,如模板的尺寸、大小、形状不能进行自适应的变化,从而导致了这种方法适用范围较窄;

② 基于可变形模板的方法,可变形模板法是对基于几何特征和通用模板匹配方法的一种改进。通过设计一个可变模型,利用监测图像的边缘、波峰和波谷值构造能量函数,当能量函数取得最小值时,此时所对应的模型的参数即为人脸面部的几何特征。这种方法存在的不足之处在于能量函数在优化时十分复杂,消耗时间较长,并且能量函数中的各个加权系数都是靠经验值确定的,在实际应用中有一定的局限性。

基于统计理论的方法

基于统计理论的方法是指利用统计分析与机器学习的方法分别寻找人脸与非人脸样本特征,利用这些特征构建分类,使用分类进行人脸检测。它主要包括神经网络方法,支持向量机方法和隐马尔可夫模型方法。基于统计理论的方法是通过样本学习而不是根据人们的直观印象得到的表象规律,因此可以减小由于人眼观测不完整和不精确带来的错误而不得不扩大检测的范围,但是这种方法需要大量的统计特性,样本训练费时费力。

现在用传统的技术已经不能再有新的突破,所以现在流行了DL架构,打破了人类的极限,又将检测,识别,跟踪等技术上升到另一个高度。

现在来简单讲讲最近几年神经网络的牛X之处。

Retinal Connected Neural Network (RCNN)

Rotation Invariant Neural Network (RINN)

Principal Component Analysis with ANN (PCA & ANN)

Evolutionary Optimization of Neural Networks

Multilayer Perceptron (MLP)

Gabor Wavelet Faces with ANN

还有好多就不一一陈述了(近几年比较主流的网络框架没有详细介绍,因为想必大家都有阅读,所以相信大家通过大量阅读一定已经有了自己的想法,赶快去实现吧!)。

在此推荐读者你阅读《Recent Advances in Face Detection》,分析的特别详细,希望对大家有帮助,谢谢!

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2019-02-19,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 计算机视觉战队 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
人脸检测与识别总结
上半年跨度到下半年之后,深度学习又进一步推送到了AI的顶端,很多领域都开始涉及到Deep Learning,而在人脸领域,已经被广泛应用,今天本平台再一次详细说说人脸领域的一些知识,想进一步让更多人的有进一步深入的熟知! ---- 最近因为种种原因,这方面的知识有得到大家的认可和对其有很大的兴趣,所以平台今天再一次分享这领域知识,让已明白的人更加深入理解,让初学者有一个好的开端与认知,谢谢大家对本平台的支持! ---- 让我开始说说人脸这个技术,真的是未来不可估计的IT技术,不知道未来会有多少企业为了这个
计算机视觉研究院
2018/04/17
2.8K0
人脸检测与识别总结
人脸检测与识别的趋势和分析
现在打开谷*公司的搜索器,输入 “face detect”,估计大家都能够想到,都是五花八门的大牛文章,我是羡慕啊!(因为里面没有我的一篇,我们实验室的原因,至今没有让我发一篇有点权威的文章,我接下来会写4张4A纸的检讨,去自我检讨下为什么?-----蓝姑) 原归正传,让我开始说说人脸这个技术,真的是未来不可估计的IT技术,不知道未来会有多少企业为了这个技术潜心研究,现在就来看看最近的技术和未来的发展吧! 我先大概说下遇到的一些问题: Ø 图像质量:人脸识别系统的主要要求是期望高质量的人脸图像,而质量好的图
计算机视觉研究院
2018/04/18
1.9K0
人脸检测与识别的趋势和分析
【深度学习】人脸检测与人脸识别
人脸是个人重要的生物特征,业界很早就对人脸图像处理技术进行了研究。人脸图像处理包括人脸检测、人脸识别、人脸检索等。人脸检测是在输入图像中检测人脸的位置、大小;人脸识别是对人脸图像身份进行确认,人脸识别通常会先对人脸进行检测定位,再进行识别;人脸检索是根据输入的人脸图像,从图像库或视频库中检索包含该人脸的其它图像或视频。
杨丝儿
2022/03/20
11.8K0
【深度学习】人脸检测与人脸识别
人脸到底是怎样识别的
人脸识别技术原理简单来讲主要是三大步骤:一是建立一个包含大批量人脸图像的数据库,二是通过各种方式来获得当前要进行识别的目标人脸图像,三是将目标人脸图像与数据库中既有的人脸图像进行比对和筛选。根据人脸识别技术原理具体实施起来的技术流程则主要包含以下四个部分,即人脸图像的采集与预处理、人脸检测、人脸特征提取、人脸识别和活体鉴别。
刘盼
2018/12/28
2.9K0
人脸到底是怎样识别的
基于adaboost的人脸快速检测
RGB、normalized RGB、HSV、YIQ、YES、CIE XYZ、CIE LUV等.
JNJYan
2019/01/18
5390
基于机器学习的疲劳检测
首先,总结一下检测某一特征的方法: (1)模板匹配计算当前帧与模板相同位置处的灰度值或颜色值的差值,通过特定的距离公式来计算匹配程度。 稳定可靠与光照和姿势无关计算量大 (2)区域分割对面部区域进行二值化分割对孤立区域进行标示,再根据几何特征进行定位。(如连通面积等)。 运算量小噪声影响大 (3)对称变换法:DST方向对称变换计算量大 (4)灰度投影法:对人脸图像进行水平和垂直方向的投影,根据波峰波谷分布信息确定眼睛的位置。(将二维换到一维中去)定位速度较快受瞳孔灰度类似的眉毛或头发影响大。 (5)基于统
微风、掠过
2018/04/10
2.3K0
基于机器学习的疲劳检测
基于Adaboost算法的人脸检测分类器
人脸检测属于计算机视觉的范畴,早期人们的主要研究方向是人脸识别,即根据人脸来识别人物的身份,后来在复杂背景下的人脸检测需求越来越大,人脸检测也逐渐作为一个单独的研究方向发展起来。
Datawhale
2020/07/14
2K0
基于haar特征+adboost分类器的人脸检测算法----haar特征
人脸检测由来已久 ,它属于计算机视觉范畴。在早期的人脸检测研究中主要侧重于人脸的识别和人物身份的鉴定,后来在复杂背景下的人脸检测需求越来越大,人脸检测也逐渐作为一个单独的研究方向发展起来。
FPGA开源工作室
2019/10/29
3.9K0
基于haar特征+adboost分类器的人脸检测算法----haar特征
从事人脸识别研究必读的N篇文章
该文内容较老,但对入门者还是有很强的学习意义,可以了解人脸识别的历程与技术发展。 人脸检测/跟踪 人脸检测/跟踪的目的是在图像/视频中找到各个人脸所在的位置和大小;对于跟踪而言,还需要确定帧间不同人脸间的对应关系。 1.Robust Real-time Object Detection. Paul Viola, Michael Jones. IJCV 2004. 入选理由: Viola的人脸检测工作使得人脸检测真正变得实时可用。他们发表了一系列文章,这篇是引用率最高的一篇。 2.Fast rotatio
AI研习社
2018/03/16
1K0
人脸检测算法综述
人脸检测是目前所有目标检测子方向中被研究的最充分的问题之一,它在安防监控,人证比对,人机交互,社交和娱乐等方面有很强的应用价值,也是整个人脸识别算法的第一步。在本文中,SIGAI将和大家一起回顾人脸检测算法的整个发展历史。
SIGAI学习与实践平台
2018/08/07
3.4K0
人脸检测算法综述
走在路上能被识别人脸,该为高科技而喜还是为隐私而忧?
You’ll never find us. But victim or perpetrator, if your number is up, we’ll find you. 你永远找不到我们。但无论是受害人还是行凶者,只要你的号码被列出来,我们就会找到你。 引子 4 月春光明媚,下班去公交车站的路上,笔者的同事掏出了口罩,把脸捂得严严实实。 ——过敏了? ——不是。 说话间,他指了指面前的红灯,还有一位正在闯红灯的大妈。随后跟我说,最近上海越来越多不守规则闯红灯的行人都收到了上海交警的短信提醒,提示号主某年
FB客服
2018/04/17
1.1K0
走在路上能被识别人脸,该为高科技而喜还是为隐私而忧?
清华出品 | 人脸识别最全知识图谱
自20世纪下半叶,计算机视觉技术逐渐地发展壮大。同时,伴随着数字图像相关的软硬件技术在人们生活中的广泛使用,数字图像已经成为当代社会信息来源的重要构成因素,各种图像处理与分析的需求和应用也不断促使该技术的革新。计算机视觉技术的应用十分广泛。数字图像检索管理、医学影像分析、智能安检、人机交互等领域都有计算机视觉技术的涉足。该技术是人工智能技术的重要组成部分,也是当今计算机科学研究的前沿领域。经过近年的不断发展,已逐步形成一套以数字信号处理技术。计算机图形图像、信息论和语义学相互结合的综合性技术,并具有较强的边缘性和学科交叉性。其中,人脸检测与识别当前图像处理、模式识别和计算机视觉内的一个热门研究课题, 也是目前生物特征识别中最受人们关注的一个分支。
数据派THU
2018/12/12
1.2K0
清华出品 | 人脸识别最全知识图谱
人脸识别长篇研究
人脸识别(Face Recognition)是一种依据人的面部特征(如统计或几何特征等),自动进行身份识别的一种生物识别技术,又称为面像识别、人像识别、相貌识别、面孔识别、面部识别等。通常我们所说的人脸识别是基于光学人脸图像的身份识别与验证的简称。
放飞人夜
2018/05/04
6.3K11
人脸识别长篇研究
【杂谈】如果你想快速系统掌握计算机视觉大部分领域,学习人脸图像是唯一选择
笔者是从传统图像算法开始进入计算机视觉行业的,那一批人基本上都是从人脸图像和文本图像开始学,而如今很多计算机视觉从业者却从来没有接触过人脸图像相关的算法,或许真的是时代变了吧。
用户1508658
2020/08/28
1.5K0
【杂谈】如果你想快速系统掌握计算机视觉大部分领域,学习人脸图像是唯一选择
What-人脸识别?
本文介绍了人脸识别技术的起源、发展、技术原理、应用以及面临的挑战和未来的发展趋势。人脸识别技术已经广泛应用于各个领域,如安防监控、人员考勤、金融支付等场景。随着技术的不断发展,人脸识别技术将越来越智能化和精准化,同时也将面临一系列的挑战和问题。未来,人脸识别技术将逐渐与其他技术相结合,实现更广泛的应用和发展。
企鹅号小编
2018/01/08
1.8K0
What-人脸识别?
漫画人脸检测 | 全局和局部信息融合的深度神经网络(文末源码)
人脸检测&识别依然是CV领域炙热的研究课题,不仅仅应用在各种刷脸产品,现在很多多媒体都在利用这个技术,与艺术融合,擦除不一样的火花,今天我们就来和大家分享,漫画中的人脸检测,与之前漫画人物自动填色相似,都是比较新颖,相信之后,会有更多的人脸技术应用到各个领域。
计算机视觉研究院
2019/05/23
1.7K0
【技术综述】人脸年龄估计研究现状
今天给大家带来一篇人脸识别中的年龄估计技术,年龄特征作为人类的一种重要生物特征,计算机要如何基于人脸图像估计年龄呢?
用户1508658
2019/07/25
2K0
【技术综述】人脸年龄估计研究现状
浅析人脸活体检测技术在人脸识别应用中的几种类型
目前已经有了越来越多的基于人脸识别的应用,例如我们现在应用极广的“刷脸支付”、“刷脸打卡”等。但随着技术的发展,当年很多电影中的画面慢慢变成了现实,坏人可以通过带上提前准备好的照片或者面具,甚至是一副眼镜,轻而易举的被识别成其他人,随着这种人脸伪造的风险和隐患逐日增加,人脸活体检测技术得到了越来越多的关注。
智能图文识别OCR
2023/02/09
1.5K0
稀疏&集成的卷积神经网络学习
今天主要和大家说的是分类检测过程中,一些稀疏和集成学习的相关知识,首先和大家说下图像目标定位与检测的方法分类。 众所周知,当前是信息时代,信息的获得、加工、处理以及应用都有了飞跃发展。人们认识世界的重要知识来源就是图像信息,在很多场合,图像所传送的信息比其他形式的信息更丰富、真切和具体。人眼与大脑的协作使得人们可以获取、处理以及理解视觉信息,人类利用视觉感知外界环境信息的效率很高。事实上,据一些国外学者所做的统计,人类所获得外界信息有80%左右是来自眼睛摄取的图像。由此可见,视觉作为人类获取外界信息的主要载
计算机视觉研究院
2018/04/17
8840
稀疏&集成的卷积神经网络学习
人脸检测发展:从VJ到深度学习(上)
本文分上下两篇,上篇主要介绍人脸检测的基本流程,以及传统的VJ人脸检测器及其改进,下篇介绍基于深度网络的检测器,以及对目前人脸检测技术发展的思考与讨论。为了让本文更适合非计算机视觉和机器学习背景的读者,文中对所涉及到的专业术语尽量以通俗的语言和用举例的方式来进行解释,同时力求严谨,以体现实事求是和一丝不苟的科学研究精神。 这是一个看脸的世界!自拍,我们要艺术美颜;出门,我么要靓丽美妆。上班,我们要刷脸签到;回家,我们要看脸相亲。 当手机把你的脸变得美若天仙,当考勤机认出你的脸对你表示欢迎,你知道是什么
AI科技评论
2018/03/07
1.8K0
人脸检测发展:从VJ到深度学习(上)
相关推荐
人脸检测与识别总结
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档