Loading [MathJax]/jax/output/CommonHTML/config.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >皮克斯技术指导辞职读博:研究AI设计怪物,从《游戏王》卡牌开始

皮克斯技术指导辞职读博:研究AI设计怪物,从《游戏王》卡牌开始

作者头像
量子位
发布于 2021-09-08 08:26:31
发布于 2021-09-08 08:26:31
4230
举报
文章被收录于专栏:量子位量子位
梦晨 发自 凹非寺 量子位 报道 | 公众号 QbitAI

让AI画人脸见得多了,要是让AI画个幻想中的怪物又如何?

来看几个,先是人形的:

再来个兽形的:

还有诡异到说不出来属于什么型的:

你可能会问,这很难吗?

毕竟现在用GAN生成人脸都能以假乱真,生成怪物只要“瞎画”就行了,又不需要像谁。

一位从皮克斯辞职又跑去读博的小哥Vavilala,最近就在研究让AI辅助人类原画师设计怪物这件事。

他的答案是:难,但不是同一种难。

如今的GAN比如英伟达的StyleGAN2,在生成怪物任务上存在一个大问题:

只擅长改变画面的风格,但里面的怪物在人类看起来还是同一种。

他开始思考,如何才能让AI创造出新的怪物?

关键在控制噪声

让AI生成怪物图像,首先要面对问题是数据集变了。

像StyleGAN系列所用的高清人脸数据集FFHQ里面,有7万张人脸照片,而且都是大致朝向正面的大头照。

虽然人的性别年龄肤色表情不一样,但好歹整体结构是相同的,都是一个鼻子两个眼。

小哥用的怪物数据集是从YGOPRODeck上获取的卡牌游戏《游戏王》中的1万多张插画,其中可以算怪物的有6800张,这里面的怪物可是什么样都有。

怪物的图片资源本来就少还要分成不同种类,全身画像在姿势上差异也很大,相当于是稀疏型数据集

数据集变了,算法也要相应的改变。

先看看StyleGAN系列原版的算法。

StyleGAN一代继承自ProGAN,采用渐进式训练,从4x4分辨率开始,每层训练到稳定再将分辨率翻倍,直到1024x1024。

来自Towards Data Science

4x4到32x32分辨率层的特征能改变姿势、发型、脸型、五官等能识别一个人身份的粗粒度特征

从64x64到1024x1024分辨率层就只能调整一下皮肤的颜色和皱纹斑点等细节特征了。

同时StyleGAN系列又靠在每个分辨率层的卷积后添加噪声获得更丰富多样的面部特征,增强图像的质量。

在初代StyleGAN论文中有这样一个实验:

如下图所示,(a)是在所有层添加随机噪声,(b)是无噪声,(c)是只在64x64分辨率及以上的层添加噪声,(d)是只在4x4到32x32分辨率的层添加噪声。

从结果可以看出,对于生成人脸来说需要在所有层上添加噪声。

高分辨率层的噪声能够增加脸上和背景物体上的细节(a、c对比b、d),低分辨率层噪声又控制头发的卷曲看起来不那么夸张(a对比c)

小哥在用游戏王数据集训练的StyleGAN2上做了同样的实验。

结果发现,噪声对于生成怪物来说同样重要,但又有所不同。

用无噪声方法生成的怪物图像在FID分数上惨不忍睹(越小代表生成的图像质量越好)。

在所有层加入噪声会好一些,而只在32x32分辨率以上的层加入噪声效果会更好。

这是因为稀疏型的怪物数据集特征太杂太多,画面还是全身的,噪声改变一点点很容易就面目全非。

等一下,这难道不就创造了新的怪物么?

仔细看上图,生成的几种怪物质量并不算高,容易出现不完整的特征和几种不同类型的特征胡乱拼凑。

修改噪声得到的图像还不可控,因为噪声是随机生成的,不同噪声对最终结果的影响也是不可解释的。

去掉低分辨率层的噪声这个方法,可以减少噪声对怪物图像粗粒度特征的影响,获得高质量图像图像的同时也保留了通过改变噪声获得随机细节的能力。

现在有了适用于生成怪物的魔改版StyleGAN2,最开始那个问题,让AI设计出新的怪物要怎么做?

其实还是靠去掉低分辨率层的噪声,这么一个简单的改动就能解决。

可控的创新

还是先看一下之前的做法。

StyleGAN2的后续研究中,阿尔托大学提出了PCA方法(Principal Component Analysis,主成分分析)。

通过PCA可以在隐空间中找到代表某种特征变化的方向,沿着特定方向修改隐变量(latent variables)能做到独立可控制的修改人脸特征。

如果在生成怪物任务上沿用在所有分辨率层添加噪声的训练方法,PCA的效果又不行了。

此时改变隐变量反倒成了对风格的修改,怪物看起来还是同一种。

改了,但没完全改。

在低分辨率层不添加噪声的训练方法再次发挥了作用。

少了低分辨率层噪声的干扰,PCA方法更容易找出有意义的修改方向,让AI在中间一列原图的基础上设计出新的怪物。

还提出实用Workflow

另外值得一提的是,这位小哥不愧是在大公司实际业务上锻炼过又回到学术界的,写论文不忘了探讨一下如何打造方便一线设计师操作的工作流程。

比如将魔改版StyleGAN2部署到A100上推理时间平均可达0.05秒,能满足即时操作的要求。

再用Streamlit工具可以用很少代码创建交互式的图形界面,用滑块一类的控件方便地调整参数。

论文最后展示了使用GAN中常见的截断技巧(Trunction)、风格混合和PCA方法结合,是怎么一步步设计出新的怪物的。

论文一作Vaibhav Vavilala来自伊利诺伊大学厄巴纳-香槟分校。

他的导师是CV大牛David Forsyth,《计算机视觉:一种现代方法》的作者。

论文地址: https://arxiv.org/abs/2108.08922

参考链接: [1]StyleGAN https://arxiv.org/abs/1812.04948 [2]StyleGAN2 https://arxiv.org/abs/1912.04958 [3]PCA https://arxiv.org/abs/2004.02546 [4]https://towardsdatascience.com/progan-how-nvidia-generated-images-of-unprecedented-quality-51c98ec2cbd2

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2021-09-04,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 量子位 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
视频全程:哈萨比斯首次公开解读AlphaZero
允中 发自 凹非寺 量子位 出品 | 公众号 QbitAI 上个月,NIPS 2017召开期间,DeepMind创始人兼CEO哈萨比斯,在一个研讨会上发表了演讲。当时也是哈萨比斯首次公开解读Alpha
量子位
2018/04/02
6420
视频全程:哈萨比斯首次公开解读AlphaZero
马库斯再谈AlphaGo Zero不是从零开始,AGI可能需要这十大先天机制
安妮 编译整理 纽约大学心理学和神经科学教授马库斯(Gary Marcus)坚信AlphaZero仍依赖于一些人类知识,也曾在AlphaZero解读现场这样diss哈萨比斯。 可能觉得说得不够,近日,马库斯在arXiv发布了本月第二篇长文Innateness, AlphaZero, and Artificial Intelligence,继续论证AlphaZero“可以在没有人类指导的情况下训练到超过人类水平”的说法被夸大了。 “当代人工智能论文(通常)用了一个‘相当不错的’具体结果,对更广泛的主题做出了
量子位
2018/01/30
6320
马库斯再谈AlphaGo Zero不是从零开始,AGI可能需要这十大先天机制
AlphaZero登上《科学》封面:一个算法“通杀”三大棋,完整论文首次发布
不仅会下围棋,还自学成才横扫国际象棋和日本将棋的DeepMind AlphaZero,登上了最新一期《科学》杂志封面。
量子位
2018/12/25
5930
AlphaZero最革命性的一点是,它没有棋子的概念
关注风云之声 提升思维层次 解读科学,洞察本质 戳穿忽悠,粉碎谣言 导读 AlphaZero下国际象棋的时候,最革命性的一点是,它没有棋子的概念。无论是人类高手还是过去的顶级AI,再怎么也是以棋子实力评估为基础的,被吃了大子会心疼,在这个基础上再去进行“重视中央”之类的局面评估理论。而AlphaZero却完全对棋子没有概念,只要它认为未来整体局势好,弃子根本不叫事。这次Deepmind新论文应该给出结论了,“MCTS+神经网络”就是先进生产力的代表。 2017年12月6号,Deepmind扔出了一篇论文
企鹅号小编
2018/02/11
1.4K0
AlphaZero最革命性的一点是,它没有棋子的概念
又一棋坛AI崛起:AlphaZero自学4小时击败最强国际象棋程序,8小时击败AlphaGo
谷歌旗下人工智能公司DeepMind将围棋AI转战国际象棋和日本将棋领域——无须人类智慧加持,已胜券在握。 AlphaZero是由谷歌旗下DeepMind研发的通用棋类AI,以不到四小时的自学击败了世界最强的国际象棋程序。 重新改进的人工智能程序AlphaZero曾多次击败世界顶级围棋选手,并扩大到学习其他棋类项目。它从零开始学习国际象棋,仅用4小时,就在100盘比赛中击败了世界顶级国际象棋程序 Stockfish 8。 据在康奈尔大学图书馆的arXiv上发表的一篇未经同行评审的研究论文称,在这100场
企鹅号小编
2018/03/05
1.4K0
又一棋坛AI崛起:AlphaZero自学4小时击败最强国际象棋程序,8小时击败AlphaGo
AlphaZero登上Science封面:从小白开始制霸多个游戏
此前不久,DeepMind 还推出了 AlphaFold,成功地根据基因序列预测出蛋白质的 3D 形状,将人工智能技术应用在了科学研究领域。
机器之心
2018/12/25
5730
AlphaZero登上Science封面:从小白开始制霸多个游戏
AlphaZero诞生一周年:登上Science封面,完整论文首次公开
阿尔法元(AlphaZero)诞生一周年之际,《科学(Science)》杂志今天以封面文发布了阿尔法元(AlphaZero)经过同行审议的完整论文,Deepmind创始人兼CEO哈萨比斯亲自执笔了这一论文。
大数据文摘
2018/12/25
7180
AlphaZero诞生一周年:登上Science封面,完整论文首次公开
观点 | 精通国际象棋的AI研究员:AlphaZero真的是一次突破吗?
选自 Medium 机器之心编译 参与:路雪、 刘晓坤 近日,Jose Camacho Collados 在 Medium 上发表了一篇题为《Is AlphaZero really a scienti
机器之心
2018/05/10
9910
天才也勤奋!DeepMind哈萨比斯自述:领导400名博士向前,每天工作至凌晨4点
哈萨比斯天天见。这位DeepMind创始人、AlphaGo之父,一直是全球赞颂的当世天才,但每天要到凌晨4点,才能睡下。
量子位
2019/04/24
5530
天才也勤奋!DeepMind哈萨比斯自述:领导400名博士向前,每天工作至凌晨4点
AlphaGo之父戴密斯·哈萨比斯:是天才,也是生活里的普通人
Deepmind创始人戴密斯·哈萨比斯是这个时代公认的天才,他不仅是世界AI领域的第一人,还是世界国际象棋大师、电脑游戏设计师、企业家和神经学家,世界范围内再无第二个人能把这些身份融为一体。
数据猿
2019/09/18
2.2K0
AlphaGo之父戴密斯·哈萨比斯:是天才,也是生活里的普通人
【重磅】AlphaZero炼成最强通用棋类AI,DeepMind强化学习算法8小时完爆人类棋类游戏
作者:闻菲,刘小芹,常佩琦 【新智元导读】或许“智能爆炸”不会发生,但永远不要低估人工智能的发展。推出最强围棋AI AlphaGo Zero不到50天,DeepMind又一次超越了他们自己,也刷新了世人对人工智能的认知。12月5日,包括David Silver、Demis Hassabis等人在内的DeepMind团队发表论文,提出通用棋类AI AlphaZero,从零开始训练,除了基本规则没有任何其他知识,4小时击败最强国际象棋AI、2小时击败最强将棋AI,8小时击败李世石版AlphaGo,连最强围棋AI
新智元
2018/03/20
1.6K0
【重磅】AlphaZero炼成最强通用棋类AI,DeepMind强化学习算法8小时完爆人类棋类游戏
“全能棋王”AlphaZero的启示 直觉如何战胜逻辑
来源:新浪科技  作者:DeepTech 现代文明和科技已经使得我们的直觉不断退化。绝大多数人都没有意识到直觉的价值甚至没有意识到它的存在。作为复杂计算的基础,直觉是一种很容易被忽视的非常规方法。这种非常规性使得许多研究人员忽视它的潜力。 本文引用地址:http://www.eepw.com.cn/article/201712/373152.htm 我在人工智能领域所做的工作围绕“先进的认知机器将使用直觉作为其智力基础”这一想法。我们人类的思想为一般化的智力提供了充足的证据。人类本质上是直觉机器,而我们
企鹅号小编
2018/02/24
6850
“全能棋王”AlphaZero的启示 直觉如何战胜逻辑
不只是围棋!AlphaGo Zero之后DeepMind推出泛化强化学习算法AlphaZero
选自arXiv 作者:David Silver等 机器之心编译 在 DeepMind 发表 Nature 论文介绍 AlphaGo Zero 之后,这家公司一直在寻求将这种强大算法泛化到其他任务中的可能性。昨天,AlphaGo 研究团队提出了 AlphaZero:一种可以从零开始,通过自我对弈强化学习在多种任务上达到超越人类水平的新算法。据称,新的算法经过不到 24 小时的训练后,可以在国际象棋和日本将棋上击败目前业内顶尖的计算机程序(这些程序早已超越人类世界冠军水平),也可以轻松击败训练 3 天时间的 A
机器之心
2018/05/09
7550
不只是围棋!AlphaGo Zero之后DeepMind推出泛化强化学习算法AlphaZero
再进化!通用算法 AlphaZero 再攻克几种棋又有何难
本文介绍了 AlphaZero 是如何利用深度强化学习解决围棋问题的。首先,AlphaZero 在无任何人类指导的情况下,通过自我对弈的方式学会下围棋。然后,它利用蒙特卡洛树搜索和深度神经网络来评估局面和选择策略。最后,通过与人类世界冠军和之前的围棋 AI 进行比较,AlphaZero 证明了其强大的围棋下棋能力。
企鹅号小编
2017/12/27
9270
再进化!通用算法 AlphaZero 再攻克几种棋又有何难
【DeepMind最新论文】新AlphaZero出世称霸棋界 ,8小时搞定一切棋类!自对弈通用强化学习无师自通!
【导读】从AlphoGo Zero 到AlphaZero只是少了一个词“围棋”(Go), 但是背后却代表着Hassabis将和他的DeepMind继续朝着“创造解决世界上一切问题的通用人工智能”这一目标道路上迈出了巨大的一步。今天DeepMind在arXiv发表论文表示其开发的通用强化学习程序AlphaZero,使用蒙特卡洛树搜索(MCTS)和深度神经网络,和强大的算力,同时在国际象棋,日本将棋和围棋中战胜各自领域的最强代表。而且这一切都是通过自我对弈完成的,在训练中除了游戏规则,不提供任何额外的领域知识。
WZEARW
2018/04/11
9660
【DeepMind最新论文】新AlphaZero出世称霸棋界 ,8小时搞定一切棋类!自对弈通用强化学习无师自通!
AlphaZero如何学习国际象棋的?
DeepMind 和 Google Brain 研究人员以及前世界国际象棋冠军Vladimir Kramnik通过概念探索、行为分析和对其激活的检查,探索了人类知识是如何获得的,以及国际象棋概念如何在 AlphaZero 神经网络中表示。
deephub
2021/12/28
8150
AlphaZero如何学习国际象棋的?
动态 | AlphaZero 荣登《科学》杂志封面
AI 科技评论按:一年前,Alphabet 旗下人工智能部门 DeepMind 发布 AlphaZero,称它可以自学国际象棋、日本将棋和中国围棋,并且项项都能击败世界冠军。而今天,经过同行评议,AlphaZero 一举登上《科学》杂志封面。
AI科技评论
2018/12/25
5750
动态 | AlphaZero 荣登《科学》杂志封面
AlphaZero完胜三大世界冠军棋类程序:5000个TPU、自学一天
Root 编译整理 量子位 出品 | 公众号 QbitAI 昨天,DeepMind团队又在arXiv上扔了个重磅炸弹,新一代AlphaZero在用了强劲的计算资源(5000个一代TPU和64个二代TPU)之后,用不到24小时的时间自我对弈(tabula rasa,也叫白板)强化学习,接连击败了三个世界冠军级的程序 (国际象棋、将棋、围棋)。 △ AlphaZero和国际象棋冠军程序对弈 其中包括上一代冠军围棋程序AlphaGo Zero,这个程序发布还不到两个月,DeepMind就又把自己颠覆了(所以谷歌团
量子位
2018/03/22
1.2K0
AlphaZero完胜三大世界冠军棋类程序:5000个TPU、自学一天
NIPS大会最精彩一日:AlphaZero遭受质疑;史上第一场正式辩论与LeCun激情抗辩;元学习&强化学习亮点复盘
机器之心原创 机器之心海外部 参与:Tony Peng、Alex Chen、Qintong Wu、之乎 美国时间周四,NIPS 大会走完了日程的一半。工业界的众多公司搬东西撤出了展览会场,受邀演讲也全
机器之心
2018/05/11
8140
比AlphaGo Zero更强的AlphaZero来了!8小时解决一切棋类! PENG Bo
Photo by Jason Kempin/Getty Images for Agon Limited 作者 | 禀临科技联合创始人 PENG Bo 读过AlphaGo Zero论文的同学,可能都惊讶于它的方法的简单。另一方面,深度神经网络,是否能适用于国际象棋这样的与围棋存在诸多差异的棋类? MCTS(蒙特卡洛树搜索)能比得上alpha-beta搜索吗?许多研究者都曾对此表示怀疑。 但今天AlphaZero来了(https://arxiv.org/pdf/1712.01815.pdf),它破除了一切怀
AI科技大本营
2018/04/27
7410
比AlphaGo Zero更强的AlphaZero来了!8小时解决一切棋类! PENG Bo
推荐阅读
视频全程:哈萨比斯首次公开解读AlphaZero
6420
马库斯再谈AlphaGo Zero不是从零开始,AGI可能需要这十大先天机制
6320
AlphaZero登上《科学》封面:一个算法“通杀”三大棋,完整论文首次发布
5930
AlphaZero最革命性的一点是,它没有棋子的概念
1.4K0
又一棋坛AI崛起:AlphaZero自学4小时击败最强国际象棋程序,8小时击败AlphaGo
1.4K0
AlphaZero登上Science封面:从小白开始制霸多个游戏
5730
AlphaZero诞生一周年:登上Science封面,完整论文首次公开
7180
观点 | 精通国际象棋的AI研究员:AlphaZero真的是一次突破吗?
9910
天才也勤奋!DeepMind哈萨比斯自述:领导400名博士向前,每天工作至凌晨4点
5530
AlphaGo之父戴密斯·哈萨比斯:是天才,也是生活里的普通人
2.2K0
【重磅】AlphaZero炼成最强通用棋类AI,DeepMind强化学习算法8小时完爆人类棋类游戏
1.6K0
“全能棋王”AlphaZero的启示 直觉如何战胜逻辑
6850
不只是围棋!AlphaGo Zero之后DeepMind推出泛化强化学习算法AlphaZero
7550
再进化!通用算法 AlphaZero 再攻克几种棋又有何难
9270
【DeepMind最新论文】新AlphaZero出世称霸棋界 ,8小时搞定一切棋类!自对弈通用强化学习无师自通!
9660
AlphaZero如何学习国际象棋的?
8150
动态 | AlphaZero 荣登《科学》杂志封面
5750
AlphaZero完胜三大世界冠军棋类程序:5000个TPU、自学一天
1.2K0
NIPS大会最精彩一日:AlphaZero遭受质疑;史上第一场正式辩论与LeCun激情抗辩;元学习&强化学习亮点复盘
8140
比AlphaGo Zero更强的AlphaZero来了!8小时解决一切棋类! PENG Bo
7410
相关推荐
视频全程:哈萨比斯首次公开解读AlphaZero
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档