导读
本文将详细介绍如何将红酒瓶上的曲面标签展平并做文字识别。(公众号:OpenCV与AI深度学习)
【2】高斯滤波平滑 + 固定阈值二值化
【3】轮廓提取排序,查找最大面积轮廓
【4】批量测试,检测算法稳定性
批量测试后发现在其他图片上并不能很好的提取标签轮廓,所以我们需要考虑其他方法来解决。
【2】训练U-Net网络模型 U-Net网络代码(TensorFlow实现):
def build_model(self, Config):
inputs = tf.keras.layers.Input((256,256,3))
s = tf.keras.layers.Lambda(lambda x: x / 255)(inputs)
#Contraction path
c1 = tf.keras.layers.Conv2D(16, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(s)
c1 = tf.keras.layers.Dropout(Config['contraction_1_dropout'])(c1)
c1 = tf.keras.layers.Conv2D(16, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(c1)
p1 = tf.keras.layers.MaxPooling2D((2, 2))(c1)
c2 = tf.keras.layers.Conv2D(32, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(p1)
c2 = tf.keras.layers.Dropout(Config['contraction_2_dropout'])(c2)
c2 = tf.keras.layers.Conv2D(32, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(c2)
p2 = tf.keras.layers.MaxPooling2D((2, 2))(c2)
c3 = tf.keras.layers.Conv2D(64, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(p2)
c3 = tf.keras.layers.Dropout(Config['contraction_3_dropout'])(c3)
c3 = tf.keras.layers.Conv2D(64, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(c3)
p3 = tf.keras.layers.MaxPooling2D((2, 2))(c3)
c4 = tf.keras.layers.Conv2D(128, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(p3)
c4 = tf.keras.layers.Dropout(Config['contraction_4_dropout'])(c4)
c4 = tf.keras.layers.Conv2D(128, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(c4)
p4 = tf.keras.layers.MaxPooling2D(pool_size=(2, 2))(c4)
c5 = tf.keras.layers.Conv2D(256, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(p4)
c5 = tf.keras.layers.Dropout(Config['contraction_5_dropout'])(c5)
c5 = tf.keras.layers.Conv2D(256, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(c5)
#Expansive path
u6 = tf.keras.layers.Conv2DTranspose(128, (2, 2), strides=(2, 2), padding='same')(c5)
u6 = tf.keras.layers.concatenate([u6, c4])
c6 = tf.keras.layers.Conv2D(128, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(u6)
c6 = tf.keras.layers.Dropout(Config['expansive_1_dropout'])(c6)
c6 = tf.keras.layers.Conv2D(128, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(c6)
u7 = tf.keras.layers.Conv2DTranspose(64, (2, 2), strides=(2, 2), padding='same')(c6)
u7 = tf.keras.layers.concatenate([u7, c3])
c7 = tf.keras.layers.Conv2D(64, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(u7)
c7 = tf.keras.layers.Dropout(Config['expansive_2_dropout'])(c7)
c7 = tf.keras.layers.Conv2D(64, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(c7)
u8 = tf.keras.layers.Conv2DTranspose(32, (2, 2), strides=(2, 2), padding='same')(c7)
u8 = tf.keras.layers.concatenate([u8, c2])
c8 = tf.keras.layers.Conv2D(32, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(u8)
c8 = tf.keras.layers.Dropout(Config['expansive_3_dropout'])(c8)
c8 = tf.keras.layers.Conv2D(32, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(c8)
u9 = tf.keras.layers.Conv2DTranspose(16, (2, 2), strides=(2, 2), padding='same')(c8)
u9 = tf.keras.layers.concatenate([u9, c1], axis=3)
c9 = tf.keras.layers.Conv2D(16, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(u9)
c9 = tf.keras.layers.Dropout(Config['expansive_4_dropout'])(c9)
c9 = tf.keras.layers.Conv2D(16, (3, 3), activation='relu', kernel_initializer='he_normal', padding='same')(c9)
outputs = tf.keras.layers.Conv2D(1, (1, 1), activation='sigmoid')(c9)
model = tf.keras.Model(inputs=[inputs], outputs=[outputs])
return model
【3】图像推理验证
个别因干扰而分割失败的情况(暂时忽略):
调整图像大小、二值化、对齐U-Net预测: # mask is the U-net output image # src is the source image # self is the parent class labelVision mask = cv2.cvtColor(mask,cv2.COLOR_GRAY2RGB) mask=cv2.resize(mask,(src.shape[1],src.shape[0])) mask = np.round(mask) #binary transform r_src, r_mask = self.align_vertically(src, mask)
如下方法先找到对角线的 A、C、D 和 F 坐标点,并通过计算简单距离计算找到 B 坐标:
其中 XB 是 B 点的 X 坐标。我们现在可以选择与该 XB 位置对应的图像的列向量 (lambda):
我们在向量中从上到下迭代以找到第一个白色像素以减去 B 点的 Y 坐标。
E 点的逻辑是相同的:我们在 D 和 F 点的中间找到列向量,这次我们从下到上迭代,直到找到第一个白色像素。 要获取实现的详细代码,请查看文末代码中的getCylinderPoints方法。 【2】根据6个特征点做曲面展平 网格圆柱投影:
标签展平:
【3】OCR文字识别 原始图像 OCR结果:
展平图像 OCR结果:
虽然展平图像 OCR结果不一定完美,但相比原始图像OCR结果要好很多。
本文分享自 OpenCV与AI深度学习 微信公众号,前往查看
如有侵权,请联系 cloudcommunity@tencent.com 删除。
本文参与 腾讯云自媒体同步曝光计划 ,欢迎热爱写作的你一起参与!
扫码关注腾讯云开发者
领取腾讯云代金券
Copyright © 2013 - 2025 Tencent Cloud. All Rights Reserved. 腾讯云 版权所有
深圳市腾讯计算机系统有限公司 ICP备案/许可证号:粤B2-20090059 深公网安备号 44030502008569
腾讯云计算(北京)有限责任公司 京ICP证150476号 | 京ICP备11018762号 | 京公网安备号11010802020287
Copyright © 2013 - 2025 Tencent Cloud.
All Rights Reserved. 腾讯云 版权所有