Loading [MathJax]/jax/output/CommonHTML/config.js
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >Google Earth Engine ——数据全解析专辑(全球人类改变数据集(gHM)以1千米的分辨率数据集)

Google Earth Engine ——数据全解析专辑(全球人类改变数据集(gHM)以1千米的分辨率数据集)

作者头像
此星光明
发布于 2024-02-02 03:20:43
发布于 2024-02-02 03:20:43
19900
代码可运行
举报
运行总次数:0
代码可运行

The global Human Modification dataset (gHM) provides a cumulative measure of human modification of terrestrial lands globally at 1 square-kilometer resolution. The gHM values range from 0.0-1.0 and are calculated by estimating the proportion of a given location (pixel) that is modified, the estimated intensity of modification associated with a given type of human modification or "stressor". 5 major anthropogenic stressors circa 2016 were mapped using 13 individual datasets:

  • human settlement (population density, built-up areas)
  • agriculture (cropland, livestock)
  • transportation (major, minor, and two-track roads; railroads)
  • mining and energy production
  • electrical infrastructure (power lines, nighttime lights)

Please see the paper for additional methodological details. This asset was re-projected to WGS84 for use in Earth Engine.

代码:

全球人类改变数据集(gHM)以1平方公里的分辨率提供了全球人类改变陆地的累积测量。gHM值的范围是0.0-1.0,通过估计一个给定的位置(像素)被修改的比例,估计与给定类型的人类修改或 "压力源 "有关的修改强度来计算。使用13个单独的数据集绘制了2016年左右的5个主要人类活动压力源。

人类住区(人口密度、建筑区 农业(耕地、牲畜 运输(主要、次要和双轨公路;铁路 采矿和能源生产 电力基础设施(电线、夜间照明)。 更多方法细节请见本文。该资产被重新投影到WGS84,以便在地球引擎中使用。

Dataset Availability

2016-01-01T00:00:00 - 2016-12-31T00:00:00

Dataset Provider

Conservation Science Partners

Collection Snippet

ee.ImageCollection("CSP/HM/GlobalHumanModification")

Resolution

1000 meters

Bands Table

Name

Description

Min

Max

Units

gHM

global Human Modification

0

1

km^2

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
var dataset = ee.ImageCollection('CSP/HM/GlobalHumanModification');

var visualization = {
  bands: ['gHM'],
  min: 0.0,
  max: 1.0,
  palette: ['0c0c0c', '071aff', 'ff0000', 'ffbd03', 'fbff05', 'fffdfd']
};

Map.centerObject(dataset);

Map.addLayer(dataset, visualization, 'Human modification');

数据引用:

Kennedy, C.M., J.R. Oakleaf, D.M. Theobald, S. Baurch-Murdo, and J. Kiesecker. 2019. Managing the middle: A shift in conservation priorities based on the global human modification gradient. Global Change Biology 00:1-16. https://doi.org/10.1111/gcb.14549

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2024-02-01,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
Google Earth Engine(GEE)——CSP gHM:全球人类改造
全球人类改造数据集 (gHM) 以 1 平方公里的分辨率提供全球人类对陆地土地改造的累积测量。gHM 值的范围为 0.0-1.0,并通过估计被修改的给定位置(像素)的比例、与给定类型的人类修改或“压力源”相关的估计修改强度来计算。使用 13 个单独的数据集绘制了大约 2016 年的 5 个主要人为压力源:
此星光明
2024/02/02
2470
Google Earth Engine(GEE)——CSP gHM:全球人类改造
Google Earth Engine ——数据全解析专辑(COPERNICUS/S5P/OFFL/L3_HCHO)大气甲醛 (HCHO) 浓度的离线高分辨率数据集
This dataset provides offline high-resolution imagery of atmospheric formaldehyde (HCHO) concentrations.
此星光明
2024/02/02
1710
Google Earth Engine ——数据全解析专辑(COPERNICUS/S5P/OFFL/L3_HCHO)大气甲醛 (HCHO) 浓度的离线高分辨率数据集
Google Earth Engine ——数据全解析专辑(US NED Physiographic Diversity地貌多样性数据集)
The Physiographic Diversity dataset provides an index of the diversity of physiographic types. It was calculated using the Shannon diversity index at multiple-scales (km): 115.8, 89.9, 35.5, 13.1, 5.6, 2.8, and 1.2. It is based on the USGS's 10m NED DEM (available in EE as USGS/NED).
此星光明
2024/02/02
1460
Google Earth Engine ——数据全解析专辑(US NED Physiographic Diversity地貌多样性数据集)
Google Earth Engine ——全球JRC/GSW1_3/YearlyHistory数据集的观测数据
This dataset contains maps of the location and temporal distribution of surface water from 1984 to 2020 and provides statistics on the extent and change of those water surfaces. For more information see the associated journal article: High-resolution mapping of global surface water and its long-term changes (Nature, 2016) and the online Data Users Guide.
此星光明
2024/02/02
2050
Google Earth Engine ——全球JRC/GSW1_3/YearlyHistory数据集的观测数据
Google Earth Engine ——数据全解析专辑(US NED CHILI /Landforms/Topographic Diversity)美国DEM地形10米分辨率数据集
CHILI is a surrogate for effects of insolation and topographic shading on evapotranspiration represented by calculating insolation at early afternoon, sun altitude equivalent to equinox. It is based on the USGS's 10m NED DEM (available in EE as USGS/NED).
此星光明
2024/02/02
2160
Google Earth Engine ——数据全解析专辑(US NED CHILI /Landforms/Topographic Diversity)美国DEM地形10米分辨率数据集
Google Earth Engine(GEE)——利用sentinel-5P数据进行中国区域so2二氧化硫的2019-2020年差异分析
This dataset provides offline high-resolution imagery of atmospheric sulfur dioxide (SO2) concentrations.
此星光明
2024/02/02
2440
Google Earth Engine ——数据全解析专辑(COPERNICUS/S5P/NRTI/L3_SO2) SO2 浓度的实时高分辨率图像数据集
This dataset provides near real-time high-resolution imagery of atmospheric sulfur dioxide (SO2) concentrations.
此星光明
2024/02/02
2040
Google Earth Engine ——数据全解析专辑(COPERNICUS/S5P/NRTI/L3_SO2) SO2 浓度的实时高分辨率图像数据集
Google Earth Engine ——全球渔船信息GFW/GFF/V1/vessel_hours数据集
Fishing vessel presence, measured in hours per square km. Each asset is the vessel presence for a given flag state and day, with one band for the presence of each gear type.
此星光明
2024/02/02
2030
Google Earth Engine ——全球渔船信息GFW/GFF/V1/vessel_hours数据集
Google Earth Engine ——数据全解析专辑(US NED mTPI (生态相关地貌(ERGo)270m分辨率数据集)
The mTPI distinguishes ridge from valley forms. It is calculated using elevation data for each location subtracted by the mean elevation within a neighborhood. mTPI uses moving windows of radius (km): 115.8, 89.9, 35.5, 13.1, 5.6, 2.8, and 1.2. It is based on the USGS's 10m NED DEM (available in EE as USGS/NED).
此星光明
2024/02/02
1710
Google Earth Engine ——数据全解析专辑(US NED mTPI (生态相关地貌(ERGo)270m分辨率数据集)
Google Earth Engine ——数据全解析专辑(COPERNICUS/S5P/NRTI/L3_O3) O3 浓度的实时高分辨率图像数据集
This dataset provides near-real-time high-resolution imagery of total column ozone concentrations. See also COPERNICUS/S5P/OFFL/L3_O3_TCL for the tropospheric column data.
此星光明
2024/02/02
2370
Google Earth Engine ——数据全解析专辑(COPERNICUS/S5P/NRTI/L3_O3) O3 浓度的实时高分辨率图像数据集
Google Earth Engine——2001年的原始森林范围数据集是利用全球获得的、免费的、经过一致处理的Landsat图像,30米的空间分辨率
Primary humid tropical forests provide numerous global ecosystem services, but are under continuing threat of clearing from economic drivers. To facilitate national land use planning and balancing the goals of economic development and maintenance of ecosystem services, a primary humid tropical forest map was created by the UMD GLAD team. The primary forest extent was mapped for the year 2001 at a spatial resolution of 30 meters using globally acquired, free-of-charge, and consistently processed Landsat imagery.
此星光明
2024/02/02
1700
Google Earth Engine——2001年的原始森林范围数据集是利用全球获得的、免费的、经过一致处理的Landsat图像,30米的空间分辨率
Google Earth Engine (GEE)——美国西部1986-至今IrrMapper灌溉状况数据集
IrrMapper是使用随机森林算法对美国西部11个州的灌溉状况进行的年度分类(即30米),涵盖1986年至今。虽然IrrMapper论文描述了四个等级的分类(即灌溉、旱地、非耕地、湿地),但数据集被转换为灌溉和非灌溉的二元分类。灌溉的 "指的是在这一年中检测到任何灌溉的情况。IrrMapper随机森林模型是用一个广泛的地理空间数据库来训练的,该数据库包括四个灌溉和非灌溉类的土地覆盖,包括50,000多块经人类验证的灌溉田,38,000块旱地,以及500,000多平方公里的未开垦土地。
此星光明
2024/02/02
1480
Google Earth Engine (GEE)——美国西部1986-至今IrrMapper灌溉状况数据集
Google Earth Engine ——数据全解析专辑(PML_V2: Coupled Evapotranspiration and Gross Primary Product)
Penman-Monteith-Leuning Evapotranspiration V2 (PML_V2) products include evapotranspiration (ET), its three components, and gross primary product (GPP) at 500m and 8-day resolution during 2002-2017 and with spatial range from -60°S to 90°N. The major advantages of the PML_V2 products are:
此星光明
2024/02/02
2950
Google Earth Engine ——数据全解析专辑(PML_V2: Coupled Evapotranspiration and Gross Primary Product)
Google Earth Engine ——全球JRC/GSW1_1/MonthlyHistory数据集的观测数据
This dataset contains maps of the location and temporal distribution of surface water from 1984 to 2018 and provides statistics on the extent and change of those water surfaces. For more information see the associated journal article: High-resolution mapping of global surface water and its long-term changes (Nature, 2016) and the online Data Users Guide.
此星光明
2024/02/02
2080
Google Earth Engine ——全球JRC/GSW1_1/MonthlyHistory数据集的观测数据
Google Earth Engine ——数据全解析专辑(COPERNICUS/S5P/NRTI/L3_CLOUD)云参数实时高分辨率数据集
This dataset provides near real-time high-resolution imagery of cloud parameters.
此星光明
2024/02/02
1980
Google Earth Engine ——数据全解析专辑(COPERNICUS/S5P/NRTI/L3_CLOUD)云参数实时高分辨率数据集
Google Earth Engine——国家农业图像计划(NAIP)在美国大陆的农业生长季节获取航空图像,1米分辨率
The National Agriculture Imagery Program (NAIP) acquires aerial imagery during the agricultural growing seasons in the continental U.S.
此星光明
2024/02/02
1870
Google Earth Engine——国家农业图像计划(NAIP)在美国大陆的农业生长季节获取航空图像,1米分辨率
Google Earth Engine ——数据全解析专辑(COPERNICUS/S5P/NRTI/L3_NO2) NO2 浓度的离线高分辨率图像数据集
This dataset provides offline high-resolution imagery of NO2 concentrations.
此星光明
2024/02/02
2370
Google Earth Engine ——数据全解析专辑(COPERNICUS/S5P/NRTI/L3_NO2) NO2 浓度的离线高分辨率图像数据集
Google Earth Engine ——数据全解析专辑(Global SRTM CHILI (Continuous Heat-Insolation L)日照和地形阴影90m分辨率数据集
CHILI is a surrogate for effects of insolation and topographic shading on evapotranspiration represented by calculating insolation at early afternoon, sun altitude equivalent to equinox. It is based on the 30m SRTM DEM (available in EE as USGS/SRTMGL1_003).
此星光明
2024/02/02
2220
Google Earth Engine ——数据全解析专辑(Global SRTM CHILI (Continuous Heat-Insolation L)日照和地形阴影90m分辨率数据集
Google Earth Engine ——全球JRC/GSW1_1/MonthlyRecurrence数据集的观测数据
This dataset contains maps of the location and temporal distribution of surface water from 1984 to 2018 and provides statistics on the extent and change of those water surfaces. For more information see the associated journal article: High-resolution mapping of global surface water and its long-term changes (Nature, 2016) and the online Data Users Guide.
此星光明
2024/02/02
1830
Google Earth Engine ——全球JRC/GSW1_1/MonthlyRecurrence数据集的观测数据
Google Earth Engine ——数据全解析专辑(CSP/ERGo/1_0/Global/ALOS_CHILI)日照和地形阴影对蒸散的影响数据集
CHILI is a surrogate for effects of insolation and topographic shading on evapotranspiration represented by calculating insolation at early afternoon, sun altitude equivalent to equinox. It is based on the 30m "AVE" band of JAXA's ALOS DEM (available in EE as JAXA/ALOS/AW3D30_V1_1).
此星光明
2024/02/02
1340
Google Earth Engine ——数据全解析专辑(CSP/ERGo/1_0/Global/ALOS_CHILI)日照和地形阴影对蒸散的影响数据集
推荐阅读
Google Earth Engine(GEE)——CSP gHM:全球人类改造
2470
Google Earth Engine ——数据全解析专辑(COPERNICUS/S5P/OFFL/L3_HCHO)大气甲醛 (HCHO) 浓度的离线高分辨率数据集
1710
Google Earth Engine ——数据全解析专辑(US NED Physiographic Diversity地貌多样性数据集)
1460
Google Earth Engine ——全球JRC/GSW1_3/YearlyHistory数据集的观测数据
2050
Google Earth Engine ——数据全解析专辑(US NED CHILI /Landforms/Topographic Diversity)美国DEM地形10米分辨率数据集
2160
Google Earth Engine(GEE)——利用sentinel-5P数据进行中国区域so2二氧化硫的2019-2020年差异分析
2440
Google Earth Engine ——数据全解析专辑(COPERNICUS/S5P/NRTI/L3_SO2) SO2 浓度的实时高分辨率图像数据集
2040
Google Earth Engine ——全球渔船信息GFW/GFF/V1/vessel_hours数据集
2030
Google Earth Engine ——数据全解析专辑(US NED mTPI (生态相关地貌(ERGo)270m分辨率数据集)
1710
Google Earth Engine ——数据全解析专辑(COPERNICUS/S5P/NRTI/L3_O3) O3 浓度的实时高分辨率图像数据集
2370
Google Earth Engine——2001年的原始森林范围数据集是利用全球获得的、免费的、经过一致处理的Landsat图像,30米的空间分辨率
1700
Google Earth Engine (GEE)——美国西部1986-至今IrrMapper灌溉状况数据集
1480
Google Earth Engine ——数据全解析专辑(PML_V2: Coupled Evapotranspiration and Gross Primary Product)
2950
Google Earth Engine ——全球JRC/GSW1_1/MonthlyHistory数据集的观测数据
2080
Google Earth Engine ——数据全解析专辑(COPERNICUS/S5P/NRTI/L3_CLOUD)云参数实时高分辨率数据集
1980
Google Earth Engine——国家农业图像计划(NAIP)在美国大陆的农业生长季节获取航空图像,1米分辨率
1870
Google Earth Engine ——数据全解析专辑(COPERNICUS/S5P/NRTI/L3_NO2) NO2 浓度的离线高分辨率图像数据集
2370
Google Earth Engine ——数据全解析专辑(Global SRTM CHILI (Continuous Heat-Insolation L)日照和地形阴影90m分辨率数据集
2220
Google Earth Engine ——全球JRC/GSW1_1/MonthlyRecurrence数据集的观测数据
1830
Google Earth Engine ——数据全解析专辑(CSP/ERGo/1_0/Global/ALOS_CHILI)日照和地形阴影对蒸散的影响数据集
1340
相关推荐
Google Earth Engine(GEE)——CSP gHM:全球人类改造
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档
本文部分代码块支持一键运行,欢迎体验
本文部分代码块支持一键运行,欢迎体验