Loading [MathJax]/jax/output/CommonHTML/config.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >机器学习常用神经网络架构和原理

机器学习常用神经网络架构和原理

作者头像
两只橙
发布于 2018-04-27 09:23:41
发布于 2018-04-27 09:23:41
1.4K0
举报
文章被收录于专栏:深度学习深度学习

一、为什么需要机器学习

有些任务直接编码较为复杂,我们不能处理所有的细微之处和简单编码,因此,机器学习很有必要。相反,我们向机器学习算法提供大量数据,让算法不断探索数据并构建模型来解决问题。比如:在新的杂乱照明场景内,从新的角度识别三维物体;编写一个计算信用卡交易诈骗概率的程序。

机器学习方法如下:它没有为每个特定的任务编写相应的程序,而是收集大量事例,为给定输入指定正确输出。算法利用这些事例产生程序。该程序与手写程序不同,可能包含数百万的数据量,也适用于新事例以及训练过的数据。若数据改变,程序在新数据上训练且被更新。大量的计算比支付手写程序要便宜的多。

机器学习的应用如下:

1、模式识别:识别实际场景的面部或表情、语言识别。

2、识别异常:信用卡交易顺序异常,核电厂传感器读数模式异常。

3、预测:未来股价或货币汇率,个人观影喜好。

二、什么是神经网络?

神经网络是一种通用机器学习模型,是一套特定的算法集,在机器学习领域掀起了一场变革,本身就是普通函数的逼近,可以应用到任何机器学习输入到输出的复杂映射问题。一般来说,神经网络架构可分为3类:

1、前馈神经网络:是最常见的类型,第一层为输入,最后一层为输出。如果有多个隐藏层,则称为“深度”神经网络。它能够计算出一系列事件间相似转变的变化,每层神经元的活动是下一层的非线性函数。

2、循环神经网络:各节点之间构成循环图,可以按照箭头的方向回到初始点。循环神经网络具有复杂的动态,难以训练,它模拟连续数据,相当于每个时间片段具有一个隐藏层的深度网络,除了在每个时间片段上使用相同的权重,也有输入。网络可以记住隐藏状态的信息,但是很难用这点来训练网络。

3、对称连接网络:和循环神经网络一样,但单元间的连接是对称的(即在两个方向的连接权重相同),它比循环神经网络更容易分析,但是功能受限。没有隐藏单元的对称连接的网络被称为“Hopfiels网络”,有隐藏单元的对称连接的网络则被称为“波兹曼机器”。

三、感知机(Perceptron)

作为第一代神经网络,感知机是只有一个神经元的计算模型。首先将原始输入矢量转化为特征矢量,再用手写程序定义特征,然后学习如何对每个特征加权得到一个标量,如果标量值高于某一阈值,则认为输入矢量是目标类的一个积极样例。标准的感知机结构是前馈模型,即输入传送到节点,处理后产生输出结果:从底部输入,顶部输出,如下图所示。但也有其局限性:一旦确定了手写编码特征,在学习上就受到了较大限制。这对感知器来说是毁灭性的,尽管转换类似于翻译,但是模式识别的重点是识别模式。如果这些转换形成了一个组,学习的感知器部分不能学会识别,所以需要使用多个特征单元识别子模式的转换。

没有隐藏单元的网络在输入输出映射建模上也有很大局限性。增加线性单元层也解决不了,因为线性叠加依然是线性的,固定的非线性输出也不能建立这种映射。因此需要建立多层自适应的非线性隐藏单元。

四、卷积神经网络(Convolutional Neural Network)

一直以来,机器学习研究广泛集中在对象检测上,但仍有诸多因素使其难以

识别对象:1.对象分割、遮挡问题;2.照明影响像素强度;3.物体以各种不同的形式展现;4.相同功能的对象具有不同的物理形状;5.视觉不同带来的变化;6.维度跳跃问题。

复制特征方法是当前CNN用于目标检测的主要方法,大规模的复制不同位置上相同的特征检测图,大大减少了要学习的自由参数数量。它使用不同的特征类型,每种类型都有自己的复制检测图,也允许以各种方式表示每个图像块。

CNN可用于手写数字识别到3D对象识别等,但从彩色图像中识别对象比手写数字识别要复杂,它的类别、像素是数字的100倍(1000 vs 100,256256彩色vs2828灰度)。

2012年的ILSVRC-2012竞赛中的ImageNet提供一个包含120万张高分辨率训练图像的数据集。测试图像没有标注,参赛者需要识别图像中对象的类型。获胜者 Alex Krizhevsky开发了一个深度卷积神经网络,除了一些最大池化层,架构还有7个隐藏层,前面都是卷积层,最后2层是全局连接。激活函数在每个隐藏层都是线性单元,比逻辑单元速度更快,还使用竞争性规范标准抑制隐藏活动,有助于强度变化。硬件上,在两个Nvidia GTX 580 GPU(超过1000个快速内核)上使用一个高效卷积网络实现,非常适合矩阵乘法,具有很高的内存带宽。

五、循环神经网络( Recurrent Neural Network)

循环神经网络(RNN)有两个强大的属性可以计算任何计算机计算出来的东西:(1)允许存储大量有效信息的分布式隐藏状态(2)用复杂的方式允许更新隐藏状态的非线性动态。RNN强大的计算能力和梯度消失(或爆炸)使其很难训练。通过多层反向传播时,若权重很小,则梯度呈指数缩小;若权重很大,则梯度呈指数增长。典型的前馈神经网络的一些隐藏层可以应对指数效应,另一方面,在长序列RNN中,梯度容易消失(或爆照),即使有好的初始权重,也很难检测出当前依赖于多个时间输入的目标输出因此很难处理远程依赖性。

学习RNN的方法如下:

长短期记忆:用具有长期记忆值的小模块制作RNN。

Hessian Free Optimization:使用优化器处理梯度消失问题。

回声状态网络:初始化输入→隐藏和隐藏→隐藏和输出→隐藏链接,使隐藏状态有一个巨大的弱耦合振荡器储备,可以选择性的由输入驱动。

用动量初始化:和回声状态网络一样,再用动量学习所有连接。

六、长短期记忆网络(Long/Short Term Memory Network)

Hochreiter & Schmidhuber(1997年)构建了长短期记忆网络,解决了获取RNN长时间记忆问题,使用乘法逻辑线性单元设计存储单元,只要保持“写入”门打开,信息就会写入并保持在单元中,也可以打开“读取”门从中获取数据。

RNN可以阅读行书,笔尖的输入坐标为(x,y,p),p代表笔是向上还是向下,输出则为一个字符序列,使用一系列小图像作为输入而不是笔坐标。Graves & Schmidhuber(2009年)称带有LSTM的RNN是阅读行书的最佳系统。

七、霍普菲尔德网络(Hopfield Networks)

非线性循环网络有很多种表现方式,较难分析:能达到稳定、震荡或馄饨状态这三种表现形式。Hopfield网络是由有循环连接的二进制阈值单元组成。1982年,约翰·霍普菲尔德发现,如果连接对称,则存在一个全局能量函数,整个网络的每个二进制“结构”都有能量,而二进制阈值决策规则使网络为能量函数设置一个最小值。使用这种计算类型最简单的方法是将记忆作为神经网络的能量最小值。使用能量最小值表示记忆给出了一个内容可寻内存,可通过了解局部内容来访问整个项目。

每记忆一次配置,都希望能产生一个能量最小值。但若有两个最小值就会限制Hopfield网络容量。伊丽莎白·加德纳发现有一个更好的存储规则,它使用了所有的权重。而不是试图一次存储多个矢量,她通过训练集进行多次循环,并用感知器收敛程序训练每个单元,使该矢量的所有其它单元具有正确的状态。

八、玻尔兹曼机(Boltzmann Machine Network)

玻尔兹曼机是一种随机循环神经网络,可以被看作是Hopfield网络的随机生成产物,是最先学习内部representations的神经网络之一。该算法旨在最大限度地提高机器在训练集中分配给二进制矢量的概率的乘积,相当于最大化其分配给训练矢量的对数概率之和,方法如下:(1)网络没有外部输入时,使网络在不同时间分布稳定;(2)每次对可见矢量采样。

2012年,Salakhutdinov和Hinton为玻尔兹曼机写了有效的小批量学习程序。2014年将模型更新,称之为受限玻尔兹曼机,详情请查看原文。

九、深度信念网络(Deep Belief Network)

反向传播,是人工神经网络计算处理一批数据后每个神经元的误差分布的标准方法,但是也存在一些问题。首先要标注训练数据,但几乎所有数据都没有标注;其次,学习时间不足,这意味着隐藏层数较多的网络较慢;第三,可能会使局部陷入最不利局面。因此,对于深度网络来说这远远不够。

无监督学习方法克服了反向传播的限制,使用梯度方法调整权重有助于保持架构的效率和简单性,还可以将它用于对感官输入结构建模。特别的是,它调整权重,将产生感官输入的生成模型概率最大化。信念网络是由随机变量组成的有向非循环图,可推断未观测变量的状态,还可以调整变量间的交互,使网络更可能产生训练数据。

早期图形模型是专家定义图像结构和条件概率,这些图形是稀疏连接的,他们专注于做正确的推论,而不是学习。但对于神经网络来说,学习是重点,其目的不在于可解释性或稀疏连接性使推断变得更容易。

十、深度自动编码器(Deep Auto-encoders)

该架构提供了两种映射方式,好像是一个做非线性降维非常好的方法,它在训练事例的数量上是线性的(或更好的),而最终编码模型相当紧凑和快速。然而,使用反向传播优化深度自动编码器很困难,若初始权重较小,反向传播梯度会消失。我们使用无监督逐层预训练或像回声状态网络一样认真的初始化权重。

对于预训练任务有三种不同类型的浅自动编码器: (1)RBM作为自动编码器; (2)去噪自动编码器; (3)压缩自动编码器。对于没有大量标注的数据集,预训练有助于后续的判别式学习。即便是深度神经网络,对于大量的标注数据集,无监督训练对权重初始化并不是必要的,预训练是初始化深度网络权重的第一个好方法,现在也有其它方法。但如果扩大网络,需要再次做预训练。

总结:传统的编程方法是我们告诉计算机做什么,将大问题分解成很多小而精确的且计算机可以轻松执行的任务。神经网络则不需要告诉计算机如何解决问题,而是从观测到的数据中学习,找到解决问题的办法。

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2018.01.18 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
机器学习研究人员需要了解的8个神经网络架构(下)
上文讲述了机器学习的功能和神经网络的概念,以及简要介绍了感知器和卷积神经网络,接下来继续介绍另外6种神经网络架构。
用户3578099
2019/08/16
5380
入门 | 机器学习研究者必知的八个神经网络架构
选自Medium 作者:James Le 机器之心编译 参与:白悦、黄小天 本文简述了机器学习核心结构的历史发展,并总结了研究者需要熟知的 8 个神经网络架构。 我们为什么需要「机器学习」? 机器学习对于那些我们直接编程太过复杂的任务来说是必需的。有些任务很复杂,以至于人类不可能解决任务中所有的细节并精确地编程。所以,我们向机器学习算法提供大量的数据,让算法通过探索数据并找到一个可以实现程序员目的的模型来解决这个问题。 我们来看两个例子: 写一个程序去识别复杂场景中照明条件下新视角的三维物体是很困难的。我们
机器之心
2018/05/10
7740
深度学习的57个名词解释及相关论文资料
一、激活函数(AcTIvaTIon FuncTIon) 为了让神经网络能够学习复杂的决策边界(decision boundary),我们在其一些层应用一个非线性激活函数。常用的函数有sigmoid
企鹅号小编
2017/12/27
2.1K0
深度学习的57个名词解释及相关论文资料
机器学习研究人员需要了解的8个神经网络架构(上)
在这篇文章中,我想与大家分享8个神经网络体系结构,我相信任何一个机器学习的研究人员都应该熟悉这一过程来促进他们的工作。
用户3578099
2019/08/16
6150
深度学习鼻祖Geoffrey Hinton带你入门机器学习(36页干货PPT)
雷锋网注:Geoffrey Everest Hinton(杰弗里·埃弗里斯特·辛顿 )是一位英国出生的计算机学家和心理学家,以其在神经网络方面的贡献闻名。辛顿是反向传播算法和对比散度算法的发明人之一,
AI科技评论
2018/03/07
3K0
深度学习鼻祖Geoffrey Hinton带你入门机器学习(36页干货PPT)
你不得不了解的8种神经网络结构!
机器学习已经在各个行业得到了大规模的广泛应用,并为提升业务流程的效率、提高生产率做出了极大的贡献。目前机器学习主要在以下方面应用: 模式识别:实际场景中的目标、包括人脸、表情、语音识别等等; 异常检测:例如信用卡交易的异常检测、传感器异常数据模式检测和异常行为检测等; 预测问题:预测股票或者汇率、或者预测消费者喜欢的电影、音乐等。 神经网络是一类机器学习算法和模型的统称,也是目前机器学习发展最快的一个领域。神经网络的架构主要分为三大类——前馈、循环和对称链接网络。神经网络具有如下三个特征使它成为了机器学习中
朱晓霞
2018/04/18
8170
你不得不了解的8种神经网络结构!
【干货】这8种神经网络结构,你掌握了几个?
【导读】近日,James Le撰写了一篇博文,全面阐述了神经网络中经典的八种神经网络结构。包括感知器、卷积神经网络、循环神经网络、LSTM、Hopfield网络、玻尔兹曼机网络、深度信念网络、深度自编
WZEARW
2018/04/12
2.1K0
【干货】这8种神经网络结构,你掌握了几个?
神经网络主要类型及其应用
目前深度学习中的神经网络种类繁多,用途各异。由于这个分支在指数增长,跟踪神经网络的不同拓扑有助于更深刻的理解。在本文中,我们将展示神经网络中最常用的拓扑结构。
McGL
2020/09/02
2.4K0
【深度学习】详细的神经网络架构图
将这些架构绘制成节点图的一个问题:它并没有真正展示这些架构的工作方式。比如说,变自编码器(VAE)可能看起来和自编码器(AE)一样,但其训练过程却相当不同。训练好的网络的使用案例之间的差别甚至更大,因为 VAE 是生成器(generator),你可以在其中插入噪声来得到新样本;而 AE 只是简单地将它们的输入映射到其所「记得」的最接近的训练样本。所以必须强调:这篇概览中的不同节点结构并不能反映出这些架构的内在工作方式。 列出一份完整的列表实际上是不可能的,因为新架构一直在不断出现。即使已经发表了,我们
机器人网
2018/04/12
1.5K0
【深度学习】详细的神经网络架构图
入门 | 献给新手的深度学习综述
论文:Recent Advances in Deep Learning: An Overview
机器之心
2018/08/21
5990
入门 | 献给新手的深度学习综述
重磅报告 | 机器学习与物理科学(一)
机器学习包含用于大量数据处理任务的广泛算法和建模工具,这些已进入近年来最科学的学科。我们以选择性的方式回顾了有关机器学习与物理科学之间的交叉领域的最新研究。这包括以物理见解为动力的机器学习(ML)的概念性发展,机器学习技术在物理学中多个领域的应用以及这两个领域之间的交叉应用。在给出了机器学习方法和原理的基本概念之后,我们介绍了如何使用统计物理学来理解机器学习中的方法的例子。然后,我们将介绍机器学习方法在粒子物理学和宇宙学,量子多体物理学,量子计算以及化学和材料物理学中的应用。我们还将重点介绍旨在加速机器学习的新型计算体系结构的研究和开发。在每个部分中,我们都描述了最近的成功以及特定领域的方法和挑战。
数据科学人工智能
2022/03/31
1.1K0
74集《面向机器人学习的神经网络》教程视频!深度学习开山鼻祖Hinton带你系统学习!
但他创立的门派——深度学习,却无人不知,点开本文的高傲的你,也许就是、或者即将成为,他的徒孙。
养码场
2018/08/10
4520
【干货】神经网络和深度学习简史
作者:机器之心 深度学习掀起海啸 如今,深度学习浪潮拍打计算机语言的海岸已有好几年,但是,2015年似乎才是这场海啸全力冲击自然语言处理(NLP)会议的一年。——Dr. Christopher D. Manning, Dec 2015 整个研究领域的成熟方法已经迅速被新发现超越,这句话听起来有些夸大其词,就像是说它被「海啸」袭击了一样。但是,这种灾难性的形容的确可以用来描述深度学习在过去几年中的异军突起——显著改善人们对解决人工智能最难问题方法的驾驭能力,吸引工业巨人(比如谷歌等)的大量投资,研究论文的指数
钱塘数据
2018/03/06
1.2K0
【干货】神经网络和深度学习简史
CMU 深度学习导论更新 | 第五讲:神经网络的收敛性
AI 研习社获得官方授权,汉化翻译CMU 2018 秋季《深度学习导论》课程,9月27日正式上线中文字幕版。
AI科技评论
2018/12/27
1.4K0
CMU 深度学习导论更新 | 第五讲:神经网络的收敛性
干货 | 转型人工智能,你需要掌握的八大神经网络
翻译 | AI科技大本营 参与 | 林椿眄 编辑 | Donna 为什么我们需要机器学习? 机器学习可以解决人类不能直接用编程来应对的复杂难题,因此,我们喂给机器学习算法大量的数据,以期得到想要的答案。 我们来看看这两个例子: 编写解决问题的程序是非常困难的,比如在杂乱的场景中,在新的照明条件下从新的角度来识别三维物体。我们不知道要如何通过代码来解决这个问题,因为这个识别过程在大脑中完成情况对我们来说还是未解之谜。 即使我们知道该怎么做,要编写的程序可能会非常复杂。 再比如,编写一个程序来预测信用卡交易
AI科技大本营
2018/04/26
8670
干货 | 转型人工智能,你需要掌握的八大神经网络
干货 | 史上最好记的神经网络结构速记表(上)
本文提供了神经网络结构速查表,盘点了神经网络的大量框架,并绘制了直观示意图进行说明,是人手必备的神经网络学习小抄。 新的神经网络结构不断涌现,我们很难一一掌握。哪怕一开始只是记住所有的简称( DCIG
AI科技评论
2018/03/14
1.4K0
干货 | 史上最好记的神经网络结构速记表(上)
最值得关注的10大深度学习算法
下图展示了传统机器学习算法与深度学习技术在数据量方面的性能比较。从图表中可以明显看出,随着数据量的增加,深度学习算法的性能也随之提升。
皮大大
2024/07/19
4210
神经网络简史
追根溯源,神经网络诞生于人类对于人脑和智能的追问。而这个追问经历了旷远蒙昧的精神至上学说,直到 19 世纪 20 年代。
用户9624935
2022/04/02
1.5K0
神经网络简史
关于深度学习,这57个专业术语,你必须得知道
本文整理了一些深度学习领域的专业名词及其简单释义,同时还附加了一些相关的论文或文章链接。本文编译自 wildml,作者仍在继续更新该表,编译如有错漏之处请指正。
IT阅读排行榜
2018/08/16
1K0
一文概览神经网络模型
一般的,神经网络模型基本结构按信息输入是否反馈,可以分为两种:前馈神经网络和反馈神经网络。
算法进阶
2022/06/02
3.8K0
一文概览神经网络模型
相关推荐
机器学习研究人员需要了解的8个神经网络架构(下)
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档