Loading [MathJax]/jax/output/CommonHTML/config.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >非凸优化与梯度下降

非凸优化与梯度下降

作者头像
gojam
修改于 2019-05-14 05:34:33
修改于 2019-05-14 05:34:33
1.8K0
举报
文章被收录于专栏:gojam技术备忘录gojam技术备忘录

首先抛一个知乎的回答:在数学中一个非凸的最优化问题是什么意思?

作者:王业磊 链接:https://www.zhihu.com/question/20343349/answer/17347657

深度学习中,我们需要学习一些参数,使我们的模型更加准确。但这些参数一开始是0或随机的,深度学习的过程是将这些参数一次次迭代,从而找到最优解。

w,b:参数 J(w,b):代价函数

从上图可以看到,求导的结果为负的时候,w和b的值会增加,反之亦然,这使得w和b逐渐接近最优解(极值)。这里可能出现的问题是,α的取值要合适,暂时不做探讨;并且不能出现多个局部最优解(多个极值),这就是要求J为凸函数的原因了。

有一点需要指出:偏微分使用符号∂而不是d,但这种使用形式并没有太多的道理,无须在意。

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2019年1月25日,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
理解凸优化
凸优化(convex optimization)是最优化问题中非常重要的一类,也是被研究的很透彻的一类。对于机器学习来说,如果要优化的问题被证明是凸优化问题,则说明此问题可以被比较好的解决。在本文中,SIGAI将为大家深入浅出的介绍凸优化的概念以及在机器学习中的应用。
SIGAI学习与实践平台
2018/08/07
1.2K0
理解凸优化
最小二乘法和梯度下降法有哪些区别? 以及梯度下降法Python实现
相同 1.本质相同:两种方法都是在给定已知数据(independent & dependent variables)的前提下对dependent variables算出出一个一般性的估值函数。然后对给定新数据的dependent variables进行估算。 2.目标相同:都是在已知数据的框架内,使得估算值与实际值的总平方差尽量更小(事实上未必一定要使用平方),估算值与实际值的总平方差的公式为:
bear_fish
2018/09/19
3.8K0
最小二乘法和梯度下降法有哪些区别? 以及梯度下降法Python实现
Pytorch_第七篇_深度学习 (DeepLearning) 基础 [3]---梯度下降
在上一篇“深度学习 (DeepLearning) 基础 [2]---神经网络常用的损失函数”中我们介绍了神经网络常用的损失函数。本文将继续学习深度学习的基础知识,主要涉及基于梯度下降的一类优化算法。首先介绍梯度下降法的主要思想,其次介绍批量梯度下降、随机梯度下降以及小批量梯度下降(mini-batch)的主要区别。
用户1483438
2022/04/06
3630
凸优化和非凸优化的区别
其中, 是 凸集是指对集合中的任意两点 ,有 ,即任意两点的连线段都在集合内,直观上就是集合不会像下图那样有“凹下去”的部分。至于闭合的凸集,则涉及到闭集的定义,而闭集的定义又基于开集,比较抽象,不赘述,这里可以简单地认为闭合的凸集是指包含有所有边界点的凸集。
狼啸风云
2019/12/20
4K0
凸优化和非凸优化的区别
《深度剖析:凸优化与梯度下降的紧密关系》
在机器学习和数学优化的领域中,凸优化和梯度下降是两个至关重要的概念,它们之间存在着紧密的联系,共同为解决各种复杂的优化问题提供了强大的工具。
程序员阿伟
2025/02/14
850
《深度剖析:凸优化与梯度下降的紧密关系》
[机器学习必知必会]凸优化
凸优化问题(OPT,convex optimization problem)指定义在凸集中的凸函数最优化的问题。尽管凸优化的条件比较苛刻,但仍然在机器学习领域有十分广泛的应用。
TOMOCAT
2020/06/09
1.6K0
[机器学习必知必会]凸优化
线性回归的求解:矩阵方程和梯度下降、数学推导及NumPy实现
我的网站公式显示效果更好:https://lulaoshi.info/machine-learning/linear-model/minimise-loss-function.html,欢迎访问。
PP鲁
2020/05/26
2.5K0
线性回归的求解:矩阵方程和梯度下降、数学推导及NumPy实现
凸优化和机器学习
转载说明:CSDN的博主poson在他的博文《机器学习的最优化问题》中指出“机器学习中的大多数问题可以归结为最优化问题”。我对机器学习的各种方法了解得不够全面,本文试图从凸优化的角度说起,简单介绍其基本理论和在机器学习算法中的应用。
sea-wind
2019/09/11
9410
凸优化和机器学习
梯度下降法求解逻辑回归
梯度下降法(Gradient Descent)是优化问题中一种常用的手段,一般用于凸函数问题(或者可以转换为凸函数的问题)的求解,而逻辑回归问题就可以转换为一个凸函数问题,我们可以使用梯度下降来获得一个较优值(不保证全局最优)。 一、什么是逻辑回归 ---- 首先让我们了解一下线性回归(参考这篇文章)的输入为单个数据xi,返回的结果是xi的具体分类yj,比如预测男女,输入的是一个人的参数,输出是具体的男或者女。逻辑回归的输入与线性回归相同,但输出为该数据xi属于某个分类yj的概率,即:P(yj|xi)。 二
机器学习AI算法工程
2018/03/13
1.1K0
梯度下降法求解逻辑回归
博客 | 机器学习中的数学基础(凸优化)
机器学习中几乎所有的问题到最后都能归结到一个优化问题,即求解损失函数的最小值。我们知道,梯度下降法和牛顿法都是通过逼近的方式到达极值点,如何使损失函数的极值点成为它的最值点就是凸函数和凸优化关注的内容。
AI研习社
2018/12/28
1.7K0
博客 | 机器学习中的数学基础(凸优化)
支持向量机原理篇之手撕线性SVM
Python版本: Python3.x 运行平台: Windows IDE: Sublime text3 一、前言 说来惭愧,断更快半个月了,本打算是一周一篇的。感觉SVM瞬间难了不少,推导耗费了很多时间,同时身边的事情也不少,忙了许久。本篇文章参考了诸多大牛的文章写成的,对于什么是SVM做出了生动的阐述,同时也进行了线性SVM的理论推导,以及最后的编程实践,公式较多,还需静下心来一点一点推导。 本文出现的所有代码,均可在我的github上下载,欢迎Follow、Star:https://githu
机器学习算法工程师
2018/03/06
2K0
支持向量机原理篇之手撕线性SVM
Python3《机器学习实战》学习笔记(八):支持向量机原理篇之手撕线性SVM
版权声明:本文为博主原创文章,未经博主允许不得转载。个人网站:http://cuijiahua.com。 https://blog.csdn.net/c406495762/article/details/78072313
Jack_Cui
2019/05/25
6740
Python3《机器学习实战》学习笔记(八):支持向量机原理篇之手撕线性SVM
凸优化有什么用
本文结构: 凸优化有什么用? 什么是凸优化? ---- 凸优化有什么用? 鉴于本文中公式比较多,先把凸优化的意义写出来吧,就会对它更有兴趣。 我们知道在机器学习中,要做的核心工作之一就是根据实际问题定义一个目标函数,然后找到它的最优解。 不过求解这种优化的问题其实是很难的,但是有一类问题叫做凸优化问题,我们就可以比较有效的找到全局最优解。 例如,SVM 本身就是把一个分类问题抽象为凸优化问题,利用凸优化的各种工具(如Lagrange对偶)进行求解和解释。深度学习中关键的算法反向传播(Back Propaga
杨熹
2018/04/03
3.8K0
凸优化有什么用
什么是梯度下降
梯度下降(Gradient Descent GD)简单来说就是一种寻找目标函数最小化的方法,它利用梯度信息,通过不断迭代调整参数来寻找合适的目标值。 本文将介绍它的原理和实现。
oYabea
2020/09/07
2.6K0
[机器学习必知必会]机器学习是什么
Tom Mitchell将机器学习任务定义为任务Task、训练过程Training Experience和模型性能Performance三个部分。 以分单引擎为例,我们可以将提高分单效率这个机器学习任务抽象地描述为:
TOMOCAT
2020/06/09
8900
[机器学习必知必会]机器学习是什么
凸优化(C)——FW方法的分析与应用,镜面下降方法,深度学习与运筹中的优化简介
上一节笔记:凸优化(B)——再看交替方向乘子法(ADMM),Frank-Wolfe方法
学弱猹
2021/08/09
1.7K0
从零开始深度学习(四):梯度下降法
文章首发于本人CSDN账号:https://blog.csdn.net/tefuirnever
我是管小亮
2020/04/20
8050
凸优化(4)——次梯度案例,加速梯度法,随机梯度下降法,近端梯度法引入
这一节我们开始把我们之前与梯度法和次梯度法有关的,但是还没有说完的部分说完。还有篇幅的话,就再谈一谈随机梯度下降方法。
学弱猹
2021/08/09
2.3K0
ML算法——梯度下降随笔【机器学习】
其中,J是关于Θ的一个函数,当前位置为 点,要从这个点走到J的最小值点,也就是山底。首先我们先确定前进的方向,也就是梯度的反向,然后走一段距离的步长,也就是α,走完这个段步长,就到达了这个点!
来杯Sherry
2023/06/07
2830
ML算法——梯度下降随笔【机器学习】
学好机器学习需要哪些数学知识?
“ 随机过程,实分析。机器学习往深里做肯定需要用这种,高级的数学语言去对问题进行描述。我本人对随机和实分析,其实目前也还只是略懂,很难说,真正的彻底掌握这两门十分强大的数学工具。”
SIGAI学习与实践平台
2018/08/07
1.6K0
学好机器学习需要哪些数学知识?
推荐阅读
相关推荐
理解凸优化
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档