翻译及二次校对:cvtutorials.com
目标
在本章中,我们将学习如何寻找和绘制二维直方图。它对后面的章节会有帮助。
绪论
在第一篇文章中,我们计算并绘制了一维直方图。它之所以被称为一维,是因为我们只考虑了一个特征,即像素的灰度灰度值。但在二维直方图中,你要考虑两个特征。通常情况下,它被用于寻找颜色直方图,其中两个特征是每个像素的色调和饱和度值。
已经有一个python样本(samples/python/color_histogram.py)用于寻找颜色直方图。我们将尝试理解如何创建这样的颜色直方图,这对理解直方图反投影等进一步的主题很有用。
OpenCV中的二维直方图
它非常简单,使用同一个函数cv.calcHist()来计算。对于颜色直方图,我们需要将图像从BGR转换为HSV。(记住,对于一维直方图,我们从BGR转换为灰度)。) 对于二维直方图,其参数将被修改如下。
现在看看下面的代码:
import numpy as np
import cv2 as cv
img = cv.imread('home.jpg')
hsv = cv.cvtColor(img,cv.COLOR_BGR2HSV)
hist = cv.calcHist([hsv], [0, 1], None, [180, 256], [0, 180, 0, 256])
Numpy中的2D直方图
Numpy还提供了一个专门的函数:np.histogram2d()。(记住,对于一维直方图,我们使用np.histogram())。)
import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt
img = cv.imread('home.jpg')
hsv = cv.cvtColor(img,cv.COLOR_BGR2HSV)
hist, xbins, ybins = np.histogram2d(h.ravel(),s.ravel(),[180,256],[[0,180],[0,256]])
第一个参数是H面,第二个是S面,第三个是bin数,第四个是范围。
现在我们可以检查如何绘制这个颜色直方图。
绘制二维直方图
方法-1:使用cv.imshow()
我们得到的结果是一个大小为180x256的二维数组。所以我们可以像平时那样,用cv.imshow()函数来显示它们。这将是一个灰度图像,除非你知道不同颜色的色相值,否则它不会让人知道有哪些颜色。
方法-2:使用Matplotlib
我们可以使用matplotlib.pyplot.imshow()函数来绘制带有不同颜色图谱的2D直方图。这可以让我们更好地了解不同的像素密度。但是,这也不能让我们在第一眼就知道是什么颜色,除非你知道不同颜色的色相值。但我还是喜欢这种方法。它既简单又好。
注意:在使用这个函数时,请记住,为了得到更好的结果,插值标志应该是最近的。
看一下代码:
import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt
img = cv.imread('home.jpg')
hsv = cv.cvtColor(img,cv.COLOR_BGR2HSV)
hist = cv.calcHist( [hsv], [0, 1], None, [180, 256], [0, 180, 0, 256] )
plt.imshow(hist,interpolation = 'nearest')
plt.show()
下面是输入的图像和它的颜色直方图图谱。X轴显示S值,Y轴显示色调。
在直方图中,你可以看到H=100和S=200附近的一些高值。它与天空的蓝色相对应。同样地,在H=25和S=100附近可以看到另一个峰值。它对应的是宫殿的黄色。你可以用任何图像编辑工具如GIMP来验证它。
方法3:OpenCV的样本风格
在OpenCV-Python2样本(samples/python/color_histogram.py)中,有一个颜色直方图的示例代码。如果你运行该代码,你可以看到直方图也显示了相应的颜色。或者简单地说,它输出了一个彩色编码的直方图。它的效果非常好(尽管你需要额外增加一堆行)。
在那段代码中,作者用HSV创建了一个颜色图。然后将其转换为BGR。得到的直方图图像与这个颜色图相乘。他还使用了一些预处理步骤来去除孤立的小像素,从而得到了一个好的直方图。
我把它留给读者,让他们去运行这段代码,分析它,思考它。下面是该代码对上述相同图像的输出。
你可以在直方图中清楚地看到哪些颜色是存在的,蓝色是存在的,黄色是存在的,还有一些由于棋盘造成的白色是存在的。