前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >手把手带你复现NC图表之Figure5

手把手带你复现NC图表之Figure5

作者头像
生信技能树jimmy
发布2023-09-26 20:18:06
3200
发布2023-09-26 20:18:06
举报
文章被收录于专栏:单细胞天地

复现文章信息:

文章题目:Single-cell analysis reveals prognostic fibroblast subpopulations linked to molecular and immunological subtypes of lung cancer 期刊:Nature Communications 日期:2023年1月31日 DOI: 10.1038/s41467-023-35832-6

复现图——Figure 5

基于机器学习的scRNA-seq数据和mxIHC分类显示外膜和肌成纤维细胞在胰腺癌、结直肠癌和口腔癌中是保守的,而肺泡成纤维细胞是肺特异性的

R包载入与数据准备

代码语言:javascript
复制
library(Seurat)
library(sctransform)
library(ggplot2)
library(WGCNA)
library(tidyverse)
library(ggpubr)
library(ggsci)
data_directory <- "H:\\文献复现\\6\\"
source(paste0(data_directory, "0_NewFunctions.R"))

load(paste0(data_directory, "IntegratedFibs_Zenodo.Rdata"))
load(paste0(data_directory, "CrossTissueAnalysis_Zenodo.Rdata"))
load(paste0(data_directory, "MxIHC_TMAdata_Zenodo.Rdata"))

Figure 5 A-C

分离自不同癌症类型并通过scRNA-seq分析的成纤维细胞的UMAP降维。检测这些成纤维细胞表型是否在不同癌症类型中是保守的,分析了PDAC49、HNSCC29和结肠直肠癌(CRC)。在每种情况下,成纤维细胞都是通过无监督聚类和壁细胞排除法鉴定

代码语言:javascript
复制
Sample_UMAP <- 
  Merged_MetaData %>%
  filter(Group %in% c("Pancreas", "Oral", "Colon")) %>%
  ggplot(aes(x = UMAP_1, y = UMAP_2, colour = Sample.type)) +
  geom_point(size = 0.1) +
  facet_wrap(~Group, scales = "free", nrow = 1) +
  theme_pubr(base_size = 15) +
  scale_color_npg(name = "Sample type") +
  theme(legend.position = "right",legend.key.size = unit(10, "pt"))+
  guides(colour = guide_legend(override.aes = list(size = 2)))
#突出显示机器学习分类器预测的与每个细胞相关的成纤维细胞亚群
Class_UMAP <- 
  Merged_MetaData %>%
  filter(Group %in% c("Pancreas", "Oral", "Colon")) %>%
  ggplot(aes(x = UMAP_1, y = UMAP_2, colour = predicted.id)) +
  geom_point(size = 0.1) +
  facet_wrap(~Group, scales = "free", nrow = 1) +
  theme_pubr(base_size = 15) +
  scale_colour_manual(values = Fibs_col.palette, name = "Predicted class") +
  theme(legend.position = "right",legend.key.size = unit(10, "pt")) +
  guides(colour = guide_legend(override.aes = list(size = 2)))
#小提琴图显示了按亚群分组的机器学习分类器模型预测的概率
Prob_VlnPlot <- 
  Merged_MetaData %>%
  filter(Group %in% c("Pancreas", "Oral", "Colon")) %>%
  ggplot(aes(x = predicted.id, y = prediction.score.max, fill = predicted.id)) +
  geom_violin(scale = "width") +
  geom_boxplot(width = 0.1, outlier.shape = NA, fill = "white") +
  facet_wrap(~Group, scales = "free", nrow = 1) +
  theme_pubr(base_size = 15) +
  scale_fill_manual(values = Fibs_col.palette, name = "Predicted class") +
  rotate_x_text(angle = 45) +
  theme(legend.position = "right", axis.title.x = element_blank(),
        legend.key.size = unit(10, "pt")) +
  ylab("Classification Probability") +
  ylim(c(0,1))

Fig_5ABC <- ggarrange(Sample_UMAP, Class_UMAP, Prob_VlnPlot, nrow = 3,
                   align = "v")


Fig_5ABC

这表明,在分析的所有癌症类型中,外膜细胞和肌成纤维细胞群都是高度保守的,而分配给肺泡亚群的成纤维细胞的概率得分一直较低,表明与肺的表型差异程度更大。

Figure 5D

来自组织微阵列(TMA)的mxIHC分析的代表性图像,所述组织微阵列由胰腺癌、口腔癌和结肠癌组织块构建。可视化显示成纤维细胞亚群的空间分布

代码语言:javascript
复制
s = "PANCREAS"
PDAC_CTR_C01 <- 
  All_TMA.data.df %>%
  filter(TvN == "Normal" & Core == "C01") %>%
  ggplot(aes(x = X.Center..Pxl., y = Y.Center..Pxl.,
             colour = Cell.type2)) +
  geom_point(size = 1.5) +
  theme_void(base_size = 15) +
  theme(legend.position = "none") +
  guides(colour = guide_legend(override.aes = list(size = 4))) +
  scale_colour_manual(values = Fibs_col.palette,
                      na.value = "grey80")
PDAC_Tumour_CO2 <- 
  All_TMA.data.df %>%
  filter(TvN == "Tumour" & Core == "C02") %>%
  ggplot(aes(x = X.Center..Pxl., y = Y.Center..Pxl.,
             colour = Cell.type2)) +
  geom_point(size = 1.5) +
  theme_void(base_size = 15) +
  theme(legend.position = "none") +
  guides(colour = guide_legend(override.aes = list(size = 4))) +
  scale_colour_manual(values = Fibs_col.palette,
                      na.value = "grey80")

HNSCC_CTR_E07 <- 
  All_TMA.data.df %>%
  filter(TvN == "Normal" & Core == "E07") %>%
  ggplot(aes(x = X.Center..Pxl., y = Y.Center..Pxl.,
             colour = Cell.type2)) +
  geom_point(size = 1.5) +
  theme_void(base_size = 15) +
  theme(legend.position = "none") +
  guides(colour = guide_legend(override.aes = list(size = 4))) +
  scale_colour_manual(values = Fibs_col.palette,
                      na.value = "grey80")

HNSCC_Tumour_E07 <- 
  All_TMA.data.df %>%
  filter(TvN == "Tumour" & Core == "E07") %>%
  ggplot(aes(x = X.Center..Pxl., y = Y.Center..Pxl.,
             colour = Cell.type2)) +
  geom_point(size = 1.5) +
  theme_void(base_size = 15) +
  theme(legend.position = "none") +
  guides(colour = guide_legend(override.aes = list(size = 4))) +
  scale_colour_manual(values = Fibs_col.palette,
                      na.value = "grey80")

COLON_CTR_B03 <- 
  All_TMA.data.df %>%
  filter(TvN == "Normal" & Core == "B03") %>%
  ggplot(aes(x = X.Center..Pxl., y = Y.Center..Pxl.,
             colour = Cell.type2)) +
  geom_point(size = 1.5) +
  theme_void(base_size = 15) +
  theme(legend.position = "none") +
  guides(colour = guide_legend(override.aes = list(size = 4))) +
  scale_colour_manual(values = Fibs_col.palette,
                      na.value = "grey80")

COLON_Tumour_B05 <- 
  All_TMA.data.df %>%
  filter(TvN == "Tumour" & Core == "B05") %>%
  ggplot(aes(x = X.Center..Pxl., y = Y.Center..Pxl.,
             colour = Cell.type2)) +
  geom_point(size = 1.5) +
  theme_void(base_size = 15) +
  theme(legend.position = "none") +
  guides(colour = guide_legend(override.aes = list(size = 4))) +
  scale_colour_manual(values = Fibs_col.palette,
                      na.value = "grey80")

Fig_5D <- ggarrange(PDAC_CTR_C01, PDAC_Tumour_CO2,
                    HNSCC_CTR_E07, HNSCC_Tumour_E07,
                    COLON_CTR_B03, COLON_Tumour_B05,
                    nrow = 6, ncol = 1)

Fig_5D

通过将多重免疫组化面板应用于由来自PDAC、HNSCC和CRC的肿瘤和对照组织核心组成的组织微阵列来验证这些结果。与scRNA-seq结果一致,这表明在每种癌症类型中,外膜和肌成纤维细胞是主要的亚群

Figure 5E-F

代码语言:javascript
复制
All_TMA.data.df.Fibroblasts <- All_TMA.data.df %>%
  filter(Cell.type2 %in% c("Alveolar", "Adventitial", "Myo"))
table(All_TMA.data.df.Fibroblasts$Cell.type2)
All_TMA.data.df.Fibroblasts$Cell.type2 <- factor(
  as.character(All_TMA.data.df.Fibroblasts$Cell.type2),
  levels = c("Adventitial", "Alveolar",  "Myo")
)
dt <- as.table(as.matrix(table(All_TMA.data.df.Fibroblasts$Core_ID,
                               All_TMA.data.df.Fibroblasts$Cell.type2)))
Sample.pct_long <- as.data.frame(dt/rowSums(dt)*100)
CoreData_long <- merge(MxIHC_TMA_metaData, Sample.pct_long,
                       by.x = "Core_ID", by.y = "Var1")
names(CoreData_long)[names(CoreData_long) == "Freq"] <- "Core.pct"
names(CoreData_long)[names(CoreData_long) == "Var2"] <- "Fibs_SubPop"

CoreData_long$Group <- factor(CoreData_long$Structure,
                              levels = unique(CoreData_long$Structure)[c(3,5,2,7,6,4,1)],
                              labels = c("Pancreas", "Oral", "Colon", "Lung", "Skin", "Breast", "Kidney"))
names(CoreData_long)
#箱形图显示肿瘤或对照组织中外膜成纤维细胞的相对丰度,通过TMA细胞核的mxIHC分析测定
Fig_5E <- 
  CoreData_long[] %>%
  drop_na(Structure.filtered) %>%
  filter(Fibs_SubPop == "Adventitial") %>%
  filter(Structure %in% c("COLON", "PANCREAS", "HNSCC")) %>%
  ggplot(aes(x = TvN, y = Core.pct)) +
  theme_pubr(base_size = 15) +
  facet_wrap(~Group) +
  geom_boxplot(outlier.shape = NA, aes(fill = Fibs_SubPop)) +
  geom_jitter(alpha = 0.5, width = 0.2) +
  scale_fill_manual(values = Fibs_col.palette) +
  rotate_x_text(angle = 45) +
  scale_y_continuous(breaks = c(0,25,50, 75, 100),
                     limits = c(0,125)) +
  stat_compare_means(comparisons = list(c("Normal", "Tumour")), size = 3,
                     label.y = 110, size = 2.5) +
  ylab("% of all fibroblast per core\n(MxIHC)") +
  theme(axis.title.x = element_blank(), legend.position = "none")
Fig_5E
#箱形图显示肿瘤或对照组织中肌成纤维细胞的相对丰度,通过TMA细胞核的mxIHC分析测定
Fig_5F <- 
  CoreData_long[] %>%
  drop_na(Structure.filtered) %>%
  filter(Fibs_SubPop == "Myo") %>%
  filter(Structure %in% c("COLON", "PANCREAS", "HNSCC")) %>%
  ggplot(aes(x = TvN, y = Core.pct)) +
  theme_pubr(base_size = 15) +
  facet_wrap(~Group) +
  geom_boxplot(outlier.shape = NA, aes(fill = Fibs_SubPop)) +
  geom_jitter(alpha = 0.5, width = 0.2) +
  scale_fill_manual(values = Fibs_col.palette) +
  rotate_x_text(angle = 45) +
  scale_y_continuous(breaks = c(0,25,50, 75, 100),
                     limits = c(0,125)) +
  stat_compare_means(comparisons = list(c("Normal", "Tumour")), size = 3,
                     #label = "p.signif", method = "wilcox",
                     label.y = 110, size = 2.5) +
  ylab("% of all fibroblast per core\n(MxIHC)") +
  theme(axis.title.x = element_blank(), legend.position = "none")
Fig_5F

Fig_5EF <- ggarrange(Fig_5E, Fig_5F, nrow = 2,
                   align = "v")

Fig_5EF

Figure 5

正如在非小细胞肺癌中发现的那样,与所有三种肿瘤类型的肿瘤组织相比,对照组中上皮成纤维细胞的丰度明显更高,而肿瘤组织中肌成纤维细胞的丰度更高。为了测试肺泡表型是否对肺纤维化具有特异性,对特发性肺纤维化(IPF)样本中产生的scRNA-seq数据进行了类似的分析,结果表明所有三个亚群都具有高概率得分,值得注意的是,该分析还显示,IPF中与肌成纤维细胞分类相关的概率低于癌症数据集,这表明癌症和纤维化中发现的肌成纤维细胞之间可能存在细微差异。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2023-06-13 21:52,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 单细胞天地 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 复现图——Figure 5
    • R包载入与数据准备
      • Figure 5 A-C
        • Figure 5D
          • Figure 5E-F
            • Figure 5
            领券
            问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档