Loading [MathJax]/jax/output/CommonHTML/config.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >理解矩阵乘法

理解矩阵乘法

作者头像
ruanyf
发布于 2018-04-13 08:19:26
发布于 2018-04-13 08:19:26
1.5K0
举报

大多数人在高中,或者大学低年级,都上过一门课《线性代数》。这门课其实是教矩阵。

刚学的时候,还蛮简单的,矩阵加法就是相同位置的数字加一下。

矩阵减法也类似。

矩阵乘以一个常数,就是所有位置都乘以这个数。

但是,等到矩阵乘以矩阵的时候,一切就不一样了。

这个结果是怎么算出来的?

教科书告诉你,计算规则是,第一个矩阵第一行的每个数字(2和1),各自乘以第二个矩阵第一列对应位置的数字(1和1),然后将乘积相加( 2 x 1 + 1 x 1),得到结果矩阵左上角的那个值3。

也就是说,结果矩阵第m行与第n列交叉位置的那个值,等于第一个矩阵第m行与第二个矩阵第n列,对应位置的每个值的乘积之和。

怎么会有这么奇怪的规则?

我一直没理解这个规则的含义,导致《线性代数》这门课就没学懂。研究生时发现,线性代数是向量计算的基础,很多重要的数学模型都要用到向量计算,所以我做不了复杂模型。这一直让我有点伤心。

前些日子,受到一篇文章的启发,我终于想通了,矩阵乘法到底是什么东西。关键就是一句话,矩阵的本质就是线性方程式,两者是一一对应关系。如果从线性方程式的角度,理解矩阵乘法就毫无难度。

下面是一组线性方程式。

矩阵的最初目的,只是为线性方程组提供一个简写形式。

老实说,从上面这种写法,已经能看出矩阵乘法的规则了:系数矩阵第一行的2和1,各自与 x 和 y 的乘积之和,等于3。不过,这不算严格的证明,只是线性方程式转为矩阵的书写规则。

下面才是严格的证明。有三组未知数 x、y 和 t,其中 x 和 y 的关系如下。

x 和 t 的关系如下。

有了这两组方程式,就可以求 y 和 t 的关系。从矩阵来看,很显然,只要把第二个矩阵代入第一个矩阵即可。

从方程式来看,也可以把第二个方程组代入第一个方程组。

上面的方程组可以整理成下面的形式。

最后那个矩阵等式,与前面的矩阵等式一对照,就会得到下面的关系。

矩阵乘法的计算规则,从而得到证明。

=========================================

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2015年9月 1日,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
华人学者彭泱获顶会最佳论文奖:如何最快求解“诺亚方舟上的鸡兔同笼问题”?靠“猜”
但是,近日,来自佐治亚理工学院的华人学者彭泱(Richard Peng)却凭借“迭代猜测”策略,提出了一种能够更快求解线性方程组的方法,并因此获得 2021 年算法顶会 ACM-SIAM 的最佳论文奖!
AI科技评论
2021/03/11
8390
日拱一卒,麻省理工的线性代数课,人工智能的梦想从这里起航
相信只要是计算机专业出身的小伙伴,应该都上过线性代数。不知道大家大一在上这门课的时候,是否有怀疑过它的用途?至少当时老师和我说它在搜索引擎等许多黑科技当中广泛使用的时候,我是毫无概念的。学的时候也只是当做纯理论来学习,也没有太过深入的思考和理解。
TechFlow-承志
2022/09/21
6020
日拱一卒,麻省理工的线性代数课,人工智能的梦想从这里起航
从几何角度理解矩阵
矩阵变换是线性代数中的主要内容,如何理解它?本文以几何角度,理解线性变换中的矩阵,能帮助学习者对其建立直观音箱。
老齐
2021/10/21
1.3K0
凸优化(9)——近端牛顿方法;矩阵论/数值线性代数基础:浮点数运算
这一节我们会接着上一节,介绍完近端牛顿方法(Proximal Newton Method),剩下的时间会拿来介绍一些基本的矩阵论和数值计算的知识,用于对之后介绍高阶方法的铺垫~
学弱猹
2021/08/09
8510
「Deep Learning」读书系列分享第二章:线性代数 | 分享总结
「Deep Learning」这本书是机器学习领域的重磅书籍,三位作者分别是机器学习界名人、GAN 的提出者、谷歌大脑研究科学家 Ian Goodfellow,神经网络领域创始三位创始人之一的蒙特利尔大学教授 Yoshua Bengio(也是 Ian Goodfellow 的老师)、同在蒙特利尔大学的神经网络与数据挖掘教授 Aaron Courville。只看作者阵容就知道这本书肯定能够从深度学习的基础知识和原理一直讲到最新的方法,而且在技术的应用方面也有许多具体介绍。这本书面向的对象也不仅是学习相关专业的
AI研习社
2018/03/19
1.1K0
「Deep Learning」读书系列分享第二章:线性代数 | 分享总结
人工智能中的线性代数:如何理解并更好地应用它
看起来就让人头大?你的脑海随即会浮现出两个问题:它们都是从哪儿来的?为什么需要这些运算?
机器之心
2019/11/05
1K0
人工智能中的线性代数:如何理解并更好地应用它
利用 Numpy 进行矩阵相关运算
NumPy 是Python数据分析必不可少的第三方库,NumPy 的出现一定程度上解决了Python运算性能不佳的问题,同时提供了更加精确的数据类型。如今,NumPy 被Python其它科学计算包作为基础包,已成为 Python 数据分析的基础,可以说 NumPy 就是SciPy、Pandas等数据处理或科学计算库最基本的函数功能库。
fireWang
2019/04/24
1.3K0
利用 Numpy 进行矩阵相关运算
日拱一卒,麻省理工的线性代数课,矩阵乘法和逆矩阵
这几天一直在成都办事,每天回来都倒头就睡,实在是没有时间,所以耽误了几天更新。之后会逐渐回到正轨~
TechFlow-承志
2022/09/21
6830
日拱一卒,麻省理工的线性代数课,矩阵乘法和逆矩阵
日拱一卒,麻省理工的线性代数课,列空间和零空间
今天我们继续MIT的线性代数课程,这一节课的内容关于列空间和零空间。这两个概念同样在线性代数当中非常重要,并且是国内教材相对比较欠缺的,对于我们系统性地理解和掌握这门课程非常有帮助。
TechFlow-承志
2022/09/21
5150
日拱一卒,麻省理工的线性代数课,列空间和零空间
利用 Numpy 进行矩阵相关运算
NumPy 是Python数据分析必不可少的第三方库,NumPy 的出现一定程度上解决了Python运算性能不佳的问题,同时提供了更加精确的数据类型。如今,NumPy 被Python其它科学计算包作为基础包,已成为 Python 数据分析的基础,可以说 NumPy 就是SciPy、Pandas等数据处理或科学计算库最基本的函数功能库。
fireWang
2019/03/13
2.3K0
鸡兔同笼终于可以靠「猜」了!佐治亚理工学者求解新方法获顶会最佳论文奖
这是《孙子算经》中鸡兔同笼问题的经典描述。我们知道,二元一次方程组可以解决这个问题。求解线性系统有矩阵乘法等多种方法,但或许你不知道,靠「猜」也是可以的。
机器之心
2021/03/15
6900
鸡兔同笼终于可以靠「猜」了!佐治亚理工学者求解新方法获顶会最佳论文奖
矩阵可逆-我们能不能回到当初第一次见面的模样
标题的意思就是,能不能回到我送你进矩阵之前的模样,要是还能回去那就是可逆,可逆其实讲的是“原料”。有没有那么一个矩阵,可以把变换过的原料再变回去。
云深无际
2024/10/12
2070
矩阵可逆-我们能不能回到当初第一次见面的模样
日拱一卒,麻省理工的线性代数课,消元法解线性方程
我们今天继续麻省理工的线性代数,昨天有同学给我留言问我,为什么不选最新版的视频,要选05版的。这里简单解释一下,主要有这么几个原因。
TechFlow-承志
2022/09/21
7120
万字长文带你复习线性代数!
课程主页:http://speech.ee.ntu.edu.tw/~tlkagk/courses_LA16.html
石晓文
2018/12/25
1.6K0
万字长文带你复习线性代数!
五分钟了解这几个numpy的重要函数
数据挖掘的理论背后,几乎离不开线性代数的计算,如矩阵乘法、矩阵分解、行列式求解等。本文将基于numpy模块实现常规线性代数的求解问题,需要注意的是,有一些线性代数的运算并不是直接调用numpy模块,而是调用numpy的子模块linalg(线性代数的缩写)。该子模块涵盖了线性代数所需的很多功能,本文将挑几个重要的例子加以说明。
1480
2019/07/15
6670
五分钟了解这几个numpy的重要函数
精通Excel数组公式020:MMULT数组函数
MMULT表示矩阵乘法(matrix multiplication)。学习过前面文章的朋友,可能已经意识到乘法矩阵在Excel公式中有很多应用。
fanjy
2021/03/12
2.4K0
呆在家无聊?何不抓住这个机会好好学习!
本公众号一向坚持的理念是数据分析工具要从基础开始学习,按部就班,才能深入理解并准确利用这些工具。鼠年第一篇原创推送比较长,将从基础的线性代数开始。线性代数大家都学过,但可能因为联系不到实用情况,都还给了曾经的老师。线性代数是数理统计尤其是各种排序分析的基础,今天我将以全新的角度基于R语言介绍线性代数,并手动完成PCA分析,从而强化关于线性代数和实际数据分析的联系。
SYSU星空
2022/05/05
7910
呆在家无聊?何不抓住这个机会好好学习!
高斯消元法(Gauss Elimination)【超详解&模板】
高斯消元法,是线性代数中的一个算法,可用来求解线性方程组,并可以求出矩阵的秩,以及求出可逆方阵的逆矩阵。 高斯消元法的原理是: 若用初等行变换将增广矩阵 化为 ,则AX = B与CX = D是同解方程
Angel_Kitty
2018/04/09
20.3K0
高斯消元法(Gauss Elimination)【超详解&模板】
Python实现所有算法-矩阵的LU分解
大家不要愁,数值算法很快就会写完,之后会写一些有趣的算法。前面的文章里面写了一些常见的数值算法,但是却没有写LU分解,哎呦不得了哦!主要的应用是:用来解线性方程、求反矩阵或计算行列式。
云深无际
2022/08/05
8510
Python实现所有算法-矩阵的LU分解
LinearAlgebra_1
方程组的几何解释 linear equation row picture column picture 矩阵计算的两种方法 some questions 需要思考的其他问题 矩阵消元 回顾 主题 消元
用户1147754
2018/01/02
1K0
推荐阅读
相关推荐
华人学者彭泱获顶会最佳论文奖:如何最快求解“诺亚方舟上的鸡兔同笼问题”?靠“猜”
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档