前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >R中时间序列分析-趋势预测ARIMA

R中时间序列分析-趋势预测ARIMA

作者头像
Erin
发布于 2018-01-09 02:56:43
发布于 2018-01-09 02:56:43
1.9K00
代码可运行
举报
文章被收录于专栏:大数据风控大数据风控
运行总次数:0
代码可运行

时间序列预测(time series forecasting)

ARIMA模型(Autoregressive Integrated Moving Average Model) ARIMA模型,将非平稳时间序列转化为平稳时间序列,然后将因变量仅对它的滞后值以及随机误差项的现值和滞后值进行回归所建立的模型。

install.packages(“forecast”) 拟合曲线的方法 auto.arima(ts) forecast(arimaModel,h)

  • arimaModel ARIMA模型
  • h 需要预测的时间长度

代码实现:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
#install.packages('forecast')
library(forecast)

data <- read.csv("data.csv", fileEncoding="UTF8")
data$均值 <- data$总销量/data$分店数

plot(data$均值, type='l')

freq <- spec.pgram(data$均值, taper=0, log='no', plot=FALSE);

start <- which(freq$spec==max(freq$spec))
frequency <- 1/freq$freq[which(freq$spec==max(freq$spec))]

meanTS <- ts(
  data$均值[start:length(data$均值)], 
  frequency=frequency
)

meanARIMA = auto.arima(meanTS)
meanARIMAForecast = forecast(meanARIMA, h=7);
meanARIMAForecast$mean
Time Series:
Start = 8.8 
End = 9.7 
Frequency = 6.66666666666667 
[1] 41.87608 44.42713 41.13537 46.31410 44.36805 43.63064 43.48562

plot(meanARIMAForecast)
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2017年07月25日,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
最完整的时间序列分析和预测(含实例及代码)
在生产和科学研究中,对某一个或者一组变量 进行观察测量,将在一系列时刻所得到的离散数字组成的序列集合,称之为时间序列。
润森
2022/09/22
4.3K0
最完整的时间序列分析和预测(含实例及代码)
用ARIMA模型做需求预测
---- 本文结构: 时间序列分析? 什么是ARIMA? ARIMA数学模型? input,output 是什么? 怎么用?-代码实例 常见问题? ---- 时间序列分析? 时间序列,就是按时间顺序排列的,随时间变化的数据序列。 生活中各领域各行业太多时间序列的数据了,销售额,顾客数,访问量,股价,油价,GDP,气温。。。 随机过程的特征有均值、方差、协方差等。 如果随机过程的特征随着时间变化,则此过程是非平稳的;相反,如果随机过程的特征不随时间而变化,就称此过程是平稳的。 下图所示,左边非稳定,右边
杨熹
2018/04/02
3.1K0
用ARIMA模型做需求预测
用R语言做时间序列分析(附数据集和源码)
时间序列(time series)是一系列有序的数据。通常是等时间间隔的采样数据。如果不是等间隔,则一般会标注每个数据点的时间刻度。 下面以time series 普遍使用的数据 airline p
机器学习AI算法工程
2018/03/12
3.7K0
用R语言做时间序列分析(附数据集和源码)
​经典时间序列模型 DeepAR 预测股票趋势
在时间序列预测领域,根据历史数据预测未来值的能力至关重要。因此,先进的机器学习算法已变得不可或缺。DeepAR 是一种功能强大的算法,它在处理复杂的时间模式和生成准确预测方面备受关注。特别适用于需要同时预测多个相关时间序列的场景,使其成为金融、电子商务和供应链管理等各个领域的重要工具。本文将讨论 DeepAR 预测算法,并将其用于时间序列预测。
数据STUDIO
2024/05/22
5130
​经典时间序列模型 DeepAR 预测股票趋势
用python做时间序列预测九:ARIMA模型简介
c是常数项,εt是随机误差项。 对于一个AR(1)模型而言: 当 ϕ1=0 时,yt 相当于白噪声; 当 ϕ1=1 并且 c=0 时,yt 相当于随机游走模型; 当 ϕ1=1 并且 c≠0 时,yt 相当于带漂移的随机游走模型; 当 ϕ1<0 时,yt 倾向于在正负值之间上下浮动。
AI粉嫩特工队
2020/06/17
32.1K1
用python做时间序列预测十:时间序列实践-航司乘客数预测
陆陆续续写了10篇时间序列相关的文章了,本系列主要是应用为主,包括初识概念、时间序列数据可视化、时间序列分解、平稳/非平稳时间序列、时间序列缺失值处理、相关函数图/偏相关函数图/滞后图、时间序列复杂度量化、Granger causality test(格兰杰因果检验)、ARIMA模型简介、时间序列实践-航司乘客数预测。 暂时先记录到这里,后续应该还会补充一些,比如基于深度学习的时间序列预测等。
AI粉嫩特工队
2020/06/16
4.1K0
使用R语言进行时间序列(arima,指数平滑)分析
您要分析时间序列数据的第一件事就是将其读入R,并绘制时间序列。您可以使用scan()函数将数据读入R,该函数假定连续时间点的数据位于包含一列的简单文本文件中。
拓端
2020/08/04
5.3K0
使用R语言进行时间序列(arima,指数平滑)分析
R中季节性时间序列分析及非季节性时间序列分析
①SAM(Simple Moving Average) 简单移动平均,将时间序列上前n个数值做简单的算术平均。 SMAn=(x1+x2+…xn)/n
Erin
2022/05/09
1.9K0
R中季节性时间序列分析及非季节性时间序列分析
Python中的ARIMA模型、SARIMA模型和SARIMAX模型对时间序列预测|附代码数据
根据频率,时间序列可以是每年(例如:年度预算),每季度(例如:支出),每周(例如:销售数量),每天(例如天气),每小时(例如:股票价格),分钟(例如:来电提示中的呼入电话),甚至是几秒钟(例如:网络流量)。
拓端
2023/07/17
1K0
R语言中的时间序列分析模型:ARIMA-ARCH / GARCH模型分析股票价格
最近我们被客户要求撰写关于ARIMA-ARCH / GARCH预测的研究报告,包括一些图形和统计输出。时间序列分析是统计学中的一个主要分支,主要侧重于分析数据集以研究数据的特征并提取有意义的统计信息来预测序列的未来值
拓端
2022/12/06
1.5K0
R语言ARIMA-GARCH波动率模型预测股票市场苹果公司日收益率时间序列|附代码数据
最近我们被客户要求撰写关于ARIMA-GARCH的研究报告,包括一些图形和统计输出。
拓端
2023/01/09
5610
R语言时间序列和ARIMA模型预测拖拉机销售的制造案例研究
本文是我们通过时间序列和ARIMA模型预测拖拉机销售的制造案例研究示例的延续。您可以在以下链接中找到以前的部分:
拓端
2020/07/17
1.6K0
R语言时间序列和ARIMA模型预测拖拉机销售的制造案例研究
python3用ARIMA模型进行时间序列预测
ARIMA是首字母缩写词,代表自动回归移动平均。它是一类模型,可在时间序列数据中捕获一组不同的标准时间结构。
拓端
2020/08/07
2.4K0
独家 | Python时间序列分析:一项基于案例的全面指南
作者: Selva Prabhakaran 翻译:陈超校对:王可汗 本文约7500字,建议阅读20+分钟本文介绍了时间序列的定义、特征并结合实例给出了时间序列在Python中评价指标和方法。
数据派THU
2021/07/16
3.3K0
ARIMA时间序列与LSTM神经网络的PK
ARIMA模型于1982年提出,是时间序列预测分析方法之一。ARIMA(p,d,q)中,AR是"自回归",p为自回归项数;MA为"滑动平均",q为滑动平均项数,d为使之成为平稳序列所做的差分次数(阶数)。后面ARIMA模型我是用R语言来实现的。
herain
2022/04/27
1.2K0
ARIMA时间序列与LSTM神经网络的PK
R语言进阶之时间序列分析
时间序列分析虽然主要应用于经济领域,但它作为一种分析时间依赖性变量之间关系的重要方法,值得我们去学习。就像孟德尔随机化里的工具变量方法那般,虽然它起自计量经济学,但在流行病学和遗传学上得到了广泛应用,所以我们做研究时需要有学科交叉思维,学科交叉往往能带来突破。
生信与临床
2020/08/05
1.5K0
Python中的ARIMA模型、SARIMA模型和SARIMAX模型对时间序列预测|附代码数据
根据频率,时间序列可以是每年(例如:年度预算),每季度(例如:支出),每周(例如:销售数量),每天(例如天气),每小时(例如:股票价格),分钟(例如:来电提示中的呼入电话),甚至是几秒钟(例如:网络流量)。
拓端
2023/02/20
1.9K0
Python中的ARIMA模型、SARIMA模型和SARIMAX模型对时间序列预测
使用ARIMA模型,您可以使用序列过去的值预测时间序列。在本文中,我们从头开始构建了一个最佳ARIMA模型,并将其扩展到Seasonal ARIMA(SARIMA)和SARIMAX模型。
拓端
2020/08/07
9.2K0
python时间序列分析代码_时间序列分析VAR实验报告
题记:毕业一年多天天coding,好久没写paper了。在这动荡的日子里,也希望写点东西让自己静一静。恰好前段时间用python做了一点时间序列方面的东西,有一丁点心得体会想和大家分享下。在此也要特别感谢顾志耐和散沙,让我喜欢上了python。
全栈程序员站长
2022/09/19
1.1K0
python时间序列分析代码_时间序列分析VAR实验报告
MADlib——基于SQL的数据挖掘解决方案(20)——时间序列分析之ARIMA
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/wzy0623/article/details/79310475
用户1148526
2019/05/25
1.1K0
推荐阅读
相关推荐
最完整的时间序列分析和预测(含实例及代码)
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档
本文部分代码块支持一键运行,欢迎体验
本文部分代码块支持一键运行,欢迎体验