目录
✨️Open-WebUI介绍
优点
💥部署教程
1.打开官网地址
2.安装Docker
3.Open WebUI下载
👁️🗨️功能介绍
1.AI编程
2.聊天历史
3.自定义Web的界面
Open WebUI 是一种基于 Web 的用户界面,用于管理和操作各种本地和云端的人工智能模型。它提供了一个直观的图形化界面,使用户可以方便地加载、配置、运行和监控各种 AI 模型,而无需编写代码或使用命令行界面。
Open-WebUI 是一款功能强大且易于使用的 Web 界面,可让您轻松与大型语言模型 (LLM) 进行交互。它具有以下优点:
用户界面
直观且响应式,可在任何设备上提供卓越的体验。
支持多种主题和自定义选项,以满足您的个人喜好。
性能
快速响应和流畅的性能,即使在处理复杂任务时也是如此。
支持多模型和多模态交互,可实现更强大的功能。
功能
API
支持 OpenAI API 和其他兼容 API,可扩展 LLM 功能。
提供 API 密钥生成和外部 Ollama 服务器连接等高级功能。
安全性
基于角色的访问控制 (RBAC),可确保仅授权用户才能访问敏感信息。
模型白名单和受信任的电子邮件身份验证可增强安全性。
后端反向代理支持可保护您的 Ollama 实例。
其他
支持多种语言,可满足全球用户的需求。
定期更新和新功能,确保您始终拥有最佳体验。
打开,开源项目Open-WebUI地址放在下方
https://github.com/open-webui/open-webui
点进去之后里边也是有相应的功能介绍,以及不同环境下的安装(具体看文档介绍)
自行去官网安装,安装教程也是十分的简单
安装完成之后重启电脑,打开Docker
复制这条命令( Ollama 在您的计算机上使用以下命令)
不同的条件下,有不同的命令,详细见开源地址所述
docker run -d -p 3000:8080 --add-host=host.docker.internal:host-gateway -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:main
参数详解
docker run
: 启动一个新的 Docker 容器。-d
: 以守护进程模式运行容器,容器将在后台运行。-p 3000:8080
: 将本地机器的端口 3000 映射到容器内的端口 8080。这意味着你可以通过访问 http://localhost:3000
来访问运行在容器内的服务。--add-host=host.docker.internal:host-gateway
: 将主机名 host.docker.internal
映射到 Docker 网关。这对于在容器内访问主机服务很有用。-v open-webui:/app/backend/data
: 将本地的 open-webui
卷映射到容器内的 /app/backend/data
目录。这用于持久化数据,确保即使容器停止或重新启动,数据也不会丢失。--name open-webui
: 为容器指定一个名称 open-webui
,以便于管理和识别。--restart always
: 设置容器的重启策略为 always
,这意味着容器如果停止(例如由于崩溃或系统重启),Docker 会自动重启它。ghcr.io/open-webui/open-webui:main
: 使用来自 GitHub 容器注册表(GitHub Container Registry)的 open-webui
镜像,并指定使用 main
标签的版本。复制完成之后打开我们的cmd命令行
复制copy的命令一键运行即可
等待下载完成即可
安装完成之后访问本地的3000端口
也可以点击自己的Docker,点击访问即可
首次登录需要创建用户
注册一个用户
成功的登录到UI界面
成功的进入之后,我们选择相应的模型,因为我本地下载过8B的模型,所以它自动会识别的。
选择好模型之后,我们来对他进行提问
可以看出类似于ChatGPT的聊天框十分的便捷
但是在访问的时候占用的是本地的内存和CPU,大家可以明显的看出 CPU飙升(我个人的笔记本性能没有那么好,并且是集成显卡)。
回答的速度是根据自己电脑的性能挂钩,并且选择的模型,也可以选择自己适合的模型
可以看出回答的也是十分的详细
测试以下编程能力
问题:
用shell脚本编写一个ping通网段所有主机 要求如果可以访问返回YES,否则就NO
它的回答:
下面是一个 shell 脚本,用于检查指定网络范围内的所有主机是否可访问,并相应地返回“YES”或“NO”:ping
#!/bin/bash
# Set the network range (e.g. 192.168.1.0/24)
NETWORK_RANGE="192.168.1.0/24"
# Set the number of hosts to ping (e.g. 254 for a /24 subnet)
NUM_HOSTS=$(ipcalc -n $NETWORK_RANGE | awk '{print $2}' | grep -oE '[0-9]+$')
# Initialize the result
RESULT="NO"
# Ping each host in the network range
for i in $(seq 1 $NUM_HOSTS); do
HOST=$NETWORK_RANGE".$i
if ping -c 1 -W 1 $HOST &> /dev/null; then
RESULT="YES"
break
fi
done
echo "$RESULT"
让我解释一下脚本的工作原理:
for``seq``$NUM_HOSTS``192.168.1.1``192.168.1.2
ping
您可以将此脚本保存到文件(例如 )中,并使用 .然后,您可以通过在终端中执行来运行它。ping_network.sh``chmod +x ping_network.sh``./ping_network.sh
注意:此脚本假定您已安装在系统上。如果没有,您可以使用包管理器安装它(例如,在基于 Ubuntu 的系统上)。此外,如果网络范围较大或主机响应缓慢,则此脚本可能需要一段时间才能运行。您可以修改脚本以使用,或者如果需要加快该过程。ipcalc``apt-get install ipcalc``parallel processing``concurrent ping
可以看的出来回答的也是十分的详细
可以看出回答的十分的仔细,不仅写出了脚本,而且还对于代码进行解释,我仅仅采用的是8B的模型,还有更高的模型。
当我们退出网页之后,重新登录,发现聊天记录仍然是在的,十分的便捷
就像官网所说的那样
管理链接更新模型
多的就不在介绍,大家部署完成之后自行实践,设置的项十分的重要。
同时还支持很多功能,自定义模型
上传下载好的模型文件
GGUF 文件模型创建:通过直接从 Web UI 上传 GGUF 文件,轻松创建 Ollama 模型。简化流程,提供从机器上传或从 Hugging Face 下载 GGUF 文件的选项。
同时还支持图像生成集成,OpenAI API集成,外部Ollama服务器链接,多用户管理,等等... 感兴趣的话可以去开源项目的文档去详细的了解,对你十分的有帮助
扫码关注腾讯云开发者
领取腾讯云代金券
Copyright © 2013 - 2025 Tencent Cloud. All Rights Reserved. 腾讯云 版权所有
深圳市腾讯计算机系统有限公司 ICP备案/许可证号:粤B2-20090059 深公网安备号 44030502008569
腾讯云计算(北京)有限责任公司 京ICP证150476号 | 京ICP备11018762号 | 京公网安备号11010802020287
Copyright © 2013 - 2025 Tencent Cloud.
All Rights Reserved. 腾讯云 版权所有