前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >OneHotEncoder介绍单属性多属性scala实现

OneHotEncoder介绍单属性多属性scala实现

作者头像
用户1171305
发布2017-12-28 11:41:59
1K0
发布2017-12-28 11:41:59
举报
文章被收录于专栏:成长道路

       因为项目的需要,将数据库中表的属性向量化,然后进行机器学习,所以去spark官网学习了一下OneHotEncoder,官网的相关介绍比较少,主要是针对单属性的处理,但是项目的要求是多属性的处理,网上找了很多的资料,研究了大半天终于将它集成到了自己的项目之中,下面分享一下自己的学习心得,说的不好的地方,还请各位大神多多指教。

      介绍:将类别映射为二进制向量,其中至多一个值为1(其余为零),这种编码可供期望连续特征的算法使用,比如逻辑回归,这些分类的算法。

     好处:1.解决分类器不好处理属性数据的问题(分类器往往默认数据是连续的,并且是有序的)

                2.在一定程度上也起到了扩充特征的作用

     原理:1.String字符串转换成索引IndexDouble

                2.索引转化成SparseVector

      总结:OneHotEncoder=String->IndexDouble->SparseVector

单属性的官网实现:

package com.iflytek.features import org.apache.spark.ml.feature.{OneHotEncoder, StringIndexer} import org.apache.spark.ml.feature.{IndexToString, StringIndexer} import org.apache.spark.sql.SparkSession import org.apache.spark.ml.linalg.SparseVector

object OneHotEncoder {   val spark=SparkSession.builder().appName("pca").master("local").getOrCreate()   def main(args: Array[String]): Unit = {   val df = spark.createDataFrame(Seq(   (0, "a"),   (1, "b"),   (2, "c"),   (3, "a"),   (4, "a"),   (5, "c")   )).toDF("id", "category")

  //可以把一个属性列里的值映射成数值类型   val indexer = new StringIndexer()     .setInputCol("category")     .setOutputCol("categoryIndex")     .fit(df)   val indexed = indexer.transform(df)

  indexed.select("category", "categoryIndex").show()

  val encoder = new OneHotEncoder()     .setInputCol("categoryIndex")     .setOutputCol("categoryVec")   val encoded = encoder.transform(indexed)   encoded.select("id","categoryIndex", "categoryVec").show()   encoded.select("categoryVec").foreach {     x => println(x.getAs[SparseVector]("categoryVec").toArray.foreach {       x => print(x+" ")       }     )     }     } }

输出结果如下:

+--------+-------------+ |category|categoryIndex| +--------+-------------+ |       a|          0.0| |       b|          2.0| |       c|          1.0| |       a|          0.0| |       a|          0.0| |       c|          1.0| +--------+-------------+

+---+-------------+-------------+ | id|categoryIndex|  categoryVec| +---+-------------+-------------+ |  0|          0.0|(2,[0],[1.0])| |  1|          2.0|    (2,[],[])| |  2|          1.0|(2,[1],[1.0])| |  3|          0.0|(2,[0],[1.0])| |  4|          0.0|(2,[0],[1.0])| |  5|          1.0|(2,[1],[1.0])| +---+-------------+-------------+

1.0 0.0 () 0.0 0.0 () 0.0 1.0 () 1.0 0.0 () 1.0 0.0 () 0.0 1.0 ()

多属性的找了很多资料,业务需求一般都是多属性的:

import  sc.implicits._     val vectorData = dataRDD       //将 枚举的值 转化为 Double      .map( x => (  enum2Double("是否已流失",x._1),   x._2(0) , x._2(1) ,x._2(2),x._2(3) ) )        //ml.feature.LabeledPoint      .toDF("loss","gender","age","grade","region")

     //indexing columns     val stringColumns = Array("gender","age","grade","region")     val index_transformers: Array[org.apache.spark.ml.PipelineStage] = stringColumns.map(     cname => new StringIndexer()         .setInputCol(cname)         .setOutputCol(s"${cname}_index")      )

    // Add the rest of your pipeline like VectorAssembler and algorithm     val index_pipeline = new Pipeline().setStages(index_transformers)     val index_model = index_pipeline.fit(vectorData)     val df_indexed = index_model.transform(vectorData)

    //encoding columns     val indexColumns  = df_indexed.columns.filter(x => x contains "index")     val one_hot_encoders: Array[org.apache.spark.ml.PipelineStage] = indexColumns.map(     cname => new OneHotEncoder()        .setInputCol(cname)        .setOutputCol(s"${cname}_vec")     )

    val pipeline = new Pipeline().setStages(index_transformers ++ one_hot_encoders)

    val model = pipeline.fit(vectorData)

model.transform(vectorData).select("loss","gender_index_vec","age_index_vec","grade_index_vec","region_index_vec")     .map (         x=>         ml.feature.LabeledPoint(x.apply(0).toString().toDouble ,ml.linalg.Vectors.dense(x.getAs[SparseVector]    ("gender_index_vec").toArray++x.getAs[SparseVector]("age_index_vec").toArray++x.getAs[SparseVector]("grade_index_vec").toArray++x.getAs[SparseVector]("region_index_vec").toArray))      )

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2017-06-07 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档