Loading [MathJax]/jax/output/CommonHTML/config.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >高斯过程 Gaussian Processes 原理、可视化及代码实现

高斯过程 Gaussian Processes 原理、可视化及代码实现

作者头像
AI算法与图像处理
发布于 2020-11-06 04:45:46
发布于 2020-11-06 04:45:46
6.5K04
代码可运行
举报
运行总次数:4
代码可运行

作者丨王桂波

来源丨https://zhuanlan.zhihu.com/p/75589452

编辑丨极市平台

导读

本文解析了高斯过程进行公式推导、原理阐述、可视化以及代码实现,并介绍了高斯过程回归基本原理、超参优化、高维输入等问题。

高斯过程 Gaussian Processes 是概率论和数理统计中随机过程的一种,是多元高斯分布的扩展,被应用于机器学习、信号处理等领域。本文对高斯过程进行公式推导、原理阐述、可视化以及代码实现,介绍了以高斯过程为基础的高斯过程回归 Gaussian Process Regression 基本原理、超参优化、高维输入等问题。

目录

  • 一元高斯分布
  • 多元高斯分布
  • 无限元高斯分布?
  • 核函数(协方差函数)
  • 高斯过程可视化
  • 高斯过程回归实现
  • 超参数优化
  • 多维输入
  • 高斯过程回归的优缺点

一元高斯分布

我们从最简单最常见的一元高斯分布开始,其概率密度函数为

p(x) = \frac{1}{\sigma\sqrt{2\pi}}\mathrm{exp}(-\frac{(x-\mu)^2}{2\sigma^2}) \\ \tag{1}

其中 和 分别表示均值和方差,这个概率密度函数曲线画出来就是我们熟悉的钟形曲线,均值和方差唯一地决定了曲线的形状。

多元高斯分布

从一元高斯分布推广到多元高斯分布,假设各维度之间相互独立

p(x_1, x_2, ..., x_n) = \prod_{i=1}^{n}p(x_i)=\frac{1}{(2\pi)^{\frac{n}{2}}\sigma_1\sigma_2...\sigma_n}\mathrm{exp}\left(-\frac{1}{2}\left [\frac{(x_1-\mu_1)^2}{\sigma_1^2} + \frac{(x_2-\mu_2)^2}{\sigma_2^2} + ... + \frac{(x_n-\mu_n)^2}{\sigma_n^2}\right]\right) \\ \tag{2}

其中 和 分别是第 1 维、第二维... 的均值和方差。对上式向量和矩阵表示上式,令

\boldsymbol{x - \mu}=[x_1-\mu_1, \ x_2-\mu_2,\ … \ x_n-\mu_n]^T\\
K = \begin{bmatrix} \sigma_1^2 & 0 & \cdots & 0\ \\ 0 & \sigma_2^2 & \cdots & 0\ \\ \vdots & \vdots & \ddots & 0\ \\ 0 & 0 & 0 & \sigma_n^2 \end{bmatrix} \\

\sigma_1\sigma_2...\sigma_n = |K|^{\frac{1}{2}}\\
\frac{(x_1-\mu_1)^2}{\sigma_1^2} + \frac{(x_2-\mu_2)^2}{\sigma_2^2} + ... + \frac{(x_n-\mu_n)^2}{\sigma_n^2}=(\boldsymbol{x-\mu})^TK^{-1}(\boldsymbol{x-\mu}) \\

代入公式(2)得到

p(\boldsymbol{x}) = (2\pi)^{-\frac{n}{2}}|K|^{-\frac{1}{2}}\mathrm{exp}\left( -\frac{1}{2}(\boldsymbol{x-\mu})^TK^{-1}(\boldsymbol{x-\mu}) \right)\\ \tag{3}

其中 是均值向量, 为协方差矩阵,由于我们假设了各维度直接相互独立,因此 是一个对角矩阵。在各维度变量相关时,上式的形式仍然一致,但此时协方差矩阵 不再是对角矩阵,只具备半正定和对称的性质。上式通常也简写为

x \sim \mathcal{N}(\boldsymbol{\mu}, K) \\

无限元高斯分布?

在多元高斯分布的基础上考虑进一步扩展,假设有无限多维呢?用一个例子来展示这个扩展的过程(来源:MLSS 2012: J. Cunningham - Gaussian Processes for Machine Learning),假设我们在周一到周四每天的 7:00 测试了 4 次心率,如下图中 4 个点,可能的高斯分布如图所示(高瘦的那条)。这是一个一元高斯分布,只有每天 7: 00 的心率这个维度。

现在考虑不仅在每天的 7: 00 测心率(横轴),在 8:00 时也进行测量(纵轴),这个时候变成两个维度(二元高斯分布),如下图所示

更进一步,如果我们在每天的无数个时间点都进行测量,则变成了下图的情况。注意下图中把测量时间作为横轴,则每个颜色的一条线代表一个(无限个时间点的测量)无限维的采样。当对每次对无限维进行采样得到无限多个点时,其实可以理解为我们采样得到了一个函数。

当从函数的视角去看待采样,理解了每次采样无限维相当于采样一个函数之后,原本的概率密度函数不再是点的分布 ,而变成了函数的分布。这个无限元高斯分布即称为高斯过程。高斯过程正式地定义为:对于所有 ,都服从多元高斯分布,则称 是一个高斯过程,表示为

f(\boldsymbol{x}) \sim \mathcal{N}(\boldsymbol{\mu}(\boldsymbol{x}), \kappa(\boldsymbol{x},\boldsymbol{x}))\\

这里 表示均值函数(Mean function),返回各个维度的均值; 为协方差函数 Covariance Function(也叫核函数 Kernel Function)返回两个向量各个维度之间的协方差矩阵。一个高斯过程为一个均值函数和协方差函数唯一地定义,并且一个高斯过程的有限维度的子集都服从一个多元高斯分布(为了方便理解,可以想象二元高斯分布两个维度各自都服从一个高斯分布)。

核函数(协方差函数)

核函数是一个高斯过程的核心,核函数决定了一个高斯过程的性质。核函数在高斯过程中起生成一个协方差矩阵(相关系数矩阵)来衡量任意两个点之间的“距离”。不同的核函数有不同的衡量方法,得到的高斯过程的性质也不一样。最常用的一个核函数为高斯核函数,也成为径向基函数 RBF。其基本形式如下。其中 和 是高斯核的超参数。

K(x_i,x_j)=\sigma^2\mathrm{exp}\left( -\frac{\left \|x_i-x_j\right \|_2^2}{2l^2}\right)\\

高斯核函数的 python 实现如下

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
import numpy as np

def gaussian_kernel(x1, x2, l=1.0, sigma_f=1.0):
    """Easy to understand but inefficient."""
    m, n = x1.shape[0], x2.shape[0]
    dist_matrix = np.zeros((m, n), dtype=float)
    for i in range(m):
        for j in range(n):
            dist_matrix[i][j] = np.sum((x1[i] - x2[j]) ** 2)
    return sigma_f ** 2 * np.exp(- 0.5 / l ** 2 * dist_matrix)

def gaussian_kernel_vectorization(x1, x2, l=1.0, sigma_f=1.0):
    """More efficient approach."""
    dist_matrix = np.sum(x1**2, 1).reshape(-1, 1) + np.sum(x2**2, 1) - 2 * np.dot(x1, x2.T)
    return sigma_f ** 2 * np.exp(-0.5 / l ** 2 * dist_matrix)

x = np.array([700, 800, 1029]).reshape(-1, 1)
print(gaussian_kernel_vectorization(x, x, l=500, sigma=10))

输出的向量 与自身的协方差矩阵为

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
[[100.    98.02  80.53]
 [ 98.02 100.    90.04]
 [ 80.53  90.04 100.  ]]

高斯过程可视化

下图是高斯过程的可视化,其中蓝线是高斯过程的均值,浅蓝色区域 95% 置信区间(由协方差矩阵的对角线得到),每条虚线代表一个函数采样(这里用了 100 维模拟连续无限维)。左上角第一幅图是高斯过程的先验(这里用了零均值作为先验),后面几幅图展示了当观测到新的数据点的时候,高斯过程如何更新自身的均值函数和协方差函数。

接下来我们用公式推导上图的过程。将高斯过程的先验表示为 ,对应左上角第一幅图,如果现在我们观测到一些数据,并且假设 与 服从联合高斯分布

\begin{bmatrix} f(\boldsymbol{x})\ \\ \boldsymbol{y^{*}}\ \end{bmatrix} \sim \mathcal{N} \left( \begin{bmatrix} \boldsymbol{\mu_f}\ \\ \boldsymbol{\mu_y}\ \end{bmatrix}, \begin{bmatrix} K_{ff} & K_{fy}\ \\ K_{fy}^T & K_{yy}\ \end{bmatrix} \right) \\

其中

K_{ff} = \kappa(\boldsymbol{x}, \boldsymbol{x})
K_{fy}=\kappa(\boldsymbol{x}, \boldsymbol{x^{*}})
K_{yy} = \kappa(\boldsymbol{x^{*}}, \boldsymbol{x^{*}})

则有

f \sim \mathcal{N}(K_{fy}^{T}K_{ff}^{-1}\boldsymbol{y}+\boldsymbol{\mu_f},K_{yy}-K_{fy}^{T}K_{ff}^{-1}K_{fy}) \\

上述式子表明了给定数据 之后函数的分布 仍然是一个高斯过程,具体的推导可见 Gaussian Processes for Machine Learning。这个式子可以看出一些有趣的性质,均值 实际上是观测点 y 的一个线性函数,协方差项 的第一部分是我们的先验的协方差,减掉的后面的那一项实际上表示了观测到数据后函数分布不确定性的减少,如果第二项非常接近于 0,说明观测数据后我们的不确定性几乎不变,反之如果第二项非常大,则说明不确定性降低了很多。

上式其实就是高斯过程回归的基本公式,首先有一个高斯过程先验分布,观测到一些数据(机器学习中的训练数据),基于先验和一定的假设(联合高斯分布)计算得到高斯过程后验分布的均值和协方差。

简单高斯过程回归实现

考虑代码实现一个高斯过程回归,API 接口风格采用 sciki-learn fit-predict 风格。由于高斯过程回归是一种非参数化 (non-parametric)的模型,每次的 inference 都需要利用所有的训练数据进行计算得到结果,因此并没有一个显式的训练模型参数的过程,所以 fit 方法只需要将训练数据保存下来,实际的 inference 在 predict 方法中进行。Python 代码如下

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
from scipy.optimize import minimize


class GPR:

    def __init__(self, optimize=True):
        self.is_fit = False
        self.train_X, self.train_y = None, None
        self.params = {"l": 0.5, "sigma_f": 0.2}
        self.optimize = optimize

    def fit(self, X, y):
        # store train data
        self.train_X = np.asarray(X)
        self.train_y = np.asarray(y)
        self.is_fit = True

    def predict(self, X):
        if not self.is_fit:
            print("GPR Model not fit yet.")
            return

        X = np.asarray(X)
        Kff = self.kernel(self.train_X, self.train_X)  # (N, N)
        Kyy = self.kernel(X, X)  # (k, k)
        Kfy = self.kernel(self.train_X, X)  # (N, k)
        Kff_inv = np.linalg.inv(Kff + 1e-8 * np.eye(len(self.train_X)))  # (N, N)
        
        mu = Kfy.T.dot(Kff_inv).dot(self.train_y)
        cov = Kyy - Kfy.T.dot(Kff_inv).dot(Kfy)
        return mu, cov

    def kernel(self, x1, x2):
        dist_matrix = np.sum(x1**2, 1).reshape(-1, 1) + np.sum(x2**2, 1) - 2 * np.dot(x1, x2.T)
        return self.params["sigma_f"] ** 2 * np.exp(-0.5 / self.params["l"] ** 2 * dist_matrix)
def y(x, noise_sigma=0.0):
    x = np.asarray(x)
    y = np.cos(x) + np.random.normal(0, noise_sigma, size=x.shape)
    return y.tolist()

train_X = np.array([3, 1, 4, 5, 9]).reshape(-1, 1)
train_y = y(train_X, noise_sigma=1e-4)
test_X = np.arange(0, 10, 0.1).reshape(-1, 1)

gpr = GPR()
gpr.fit(train_X, train_y)
mu, cov = gpr.predict(test_X)
test_y = mu.ravel()
uncertainty = 1.96 * np.sqrt(np.diag(cov))
plt.figure()
plt.title("l=%.2f sigma_f=%.2f" % (gpr.params["l"], gpr.params["sigma_f"]))
plt.fill_between(test_X.ravel(), test_y + uncertainty, test_y - uncertainty, alpha=0.1)
plt.plot(test_X, test_y, label="predict")
plt.scatter(train_X, train_y, label="train", c="red", marker="x")
plt.legend()

结果如下图,红点是训练数据,蓝线是预测值,浅蓝色区域是 95% 置信区间。真实的函数是一个 cosine 函数,可以看到在训练数据点较为密集的地方,模型预测的不确定性较低,而在训练数据点比较稀疏的区域,模型预测不确定性较高。

超参数优化

上文提到高斯过程是一种非参数模型,没有训练模型参数的过程,一旦核函数、训练数据给定,则模型就被唯一地确定下来。但是核函数本身是有参数的,比如高斯核的参数 和 ,我们称为这种参数为模型的超参数(类似于 k-NN 模型中 k 的取值)。

核函数本质上决定了样本点相似性的度量方法,进行影响到了整个函数的概率分布的形状。上面的高斯过程回归的例子中使用了 的超参数,我们可以选取不同的超参数看看回归出来的效果。

从上图可以看出, 越大函数更加平滑,同时训练数据点之间的预测方差更小,反之 越小则函数倾向于更加“曲折”,训练数据点之间的预测方差更大; 则直接控制方差大小, 越大方差越大,反之亦然。

如何选择最优的核函数参数 和 呢?答案是最大化在这两个超参数下 出现的概率,通过最大化边缘对数似然(Marginal Log-likelihood)来找到最优的参数,边缘对数似然表示为

\mathrm{log}\ p(\boldsymbol{y}|\sigma, l) = \mathrm{log} \ \mathcal{N}(\boldsymbol{0}, K_{yy}(\sigma, l)) = -\frac{1}{2}\boldsymbol{y}^T K_{yy}^{-1}\boldsymbol{y} - \frac{1}{2}\mathrm{log}\ |K_{yy}| - \frac{N}{2}\mathrm{log} \ (2\pi) \\

具体的实现中,我们在 fit 方法中增加超参数优化这部分的代码,最小化负边缘对数似然。

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
from scipy.optimize import minimize


class GPR:

    def __init__(self, optimize=True):
        self.is_fit = False
        self.train_X, self.train_y = None, None
        self.params = {"l": 0.5, "sigma_f": 0.2}
        self.optimize = optimize

    def fit(self, X, y):
        # store train data
        self.train_X = np.asarray(X)
        self.train_y = np.asarray(y)

         # hyper parameters optimization
        def negative_log_likelihood_loss(params):
            self.params["l"], self.params["sigma_f"] = params[0], params[1]
            Kyy = self.kernel(self.train_X, self.train_X) + 1e-8 * np.eye(len(self.train_X))
            return 0.5 * self.train_y.T.dot(np.linalg.inv(Kyy)).dot(self.train_y) + 0.5 * np.linalg.slogdet(Kyy)[1] + 0.5 * len(self.train_X) * np.log(2 * np.pi)

        if self.optimize:
            res = minimize(negative_log_likelihood_loss, [self.params["l"], self.params["sigma_f"]],
                   bounds=((1e-4, 1e4), (1e-4, 1e4)),
                   method='L-BFGS-B')
            self.params["l"], self.params["sigma_f"] = res.x[0], res.x[1]

        self.is_fit = True

将训练、优化得到的超参数、预测结果可视化如下图,可以看到最优的

这里用 scikit-learn 的 GaussianProcessRegressor 接口进行对比

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.gaussian_process.kernels import ConstantKernel, RBF

# fit GPR
kernel = ConstantKernel(constant_value=0.2, constant_value_bounds=(1e-4, 1e4)) * RBF(length_scale=0.5, length_scale_bounds=(1e-4, 1e4))
gpr = GaussianProcessRegressor(kernel=kernel, n_restarts_optimizer=2)
gpr.fit(train_X, train_y)
mu, cov = gpr.predict(test_X, return_cov=True)
test_y = mu.ravel()
uncertainty = 1.96 * np.sqrt(np.diag(cov))

# plotting
plt.figure()
plt.title("l=%.1f sigma_f=%.1f" % (gpr.kernel_.k2.length_scale, gpr.kernel_.k1.constant_value))
plt.fill_between(test_X.ravel(), test_y + uncertainty, test_y - uncertainty, alpha=0.1)
plt.plot(test_X, test_y, label="predict")
plt.scatter(train_X, train_y, label="train", c="red", marker="x")
plt.legend()

得到结果为 ,这个与我们实现的优化得到的超参数有一点点不同,可能是实现的细节有所不同导致。

多维输入

我们上面讨论的训练数据都是一维的,高斯过程直接可以扩展于多维输入的情况,直接将输入维度增加即可。

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
def y_2d(x, noise_sigma=0.0):
    x = np.asarray(x)
    y = np.sin(0.5 * np.linalg.norm(x, axis=1))
    y += np.random.normal(0, noise_sigma, size=y.shape)
    return y

train_X = np.random.uniform(-4, 4, (100, 2)).tolist()
train_y = y_2d(train_X, noise_sigma=1e-4)

test_d1 = np.arange(-5, 5, 0.2)
test_d2 = np.arange(-5, 5, 0.2)
test_d1, test_d2 = np.meshgrid(test_d1, test_d2)
test_X = [[d1, d2] for d1, d2 in zip(test_d1.ravel(), test_d2.ravel())]

gpr = GPR(optimize=True)
gpr.fit(train_X, train_y)
mu, cov = gpr.predict(test_X)
z = mu.reshape(test_d1.shape)

fig = plt.figure(figsize=(7, 5))
ax = Axes3D(fig)
ax.plot_surface(test_d1, test_d2, z, cmap=cm.coolwarm, linewidth=0, alpha=0.2, antialiased=False)
ax.scatter(np.asarray(train_X)[:,0], np.asarray(train_X)[:,1], train_y, c=train_y, cmap=cm.coolwarm)
ax.contourf(test_d1, test_d2, z, zdir='z', offset=0, cmap=cm.coolwarm, alpha=0.6)
ax.set_title("l=%.2f sigma_f=%.2f" % (gpr.params["l"], gpr.params["sigma_f"]))

下面是一个二维输入数据的高斯过程回归,左图是没有经过超参优化的拟合效果,右图是经过超参优化的拟合效果。

以上相关的代码放在 toys/GP 。

高斯过程回归的优缺点

  • 优点
    • (采用 RBF 作为协方差函数)具有平滑性质,能够拟合非线性数据
    • 高斯过程回归天然支持得到模型关于预测的不确定性(置信区间),直接输出关于预测点值的概率分布
    • 通过最大化边缘似然这一简洁的方式,高斯过程回归可以在不需要交叉验证的情况下给出比较好的正则化效果
  • 缺点
    • 高斯过程是一个非参数模型,每次的 inference 都需要对所有的数据点进行(矩阵求逆)。对于没有经过任何优化的高斯过程回归,n 个样本点时间复杂度大概是 ,空间复杂度是 ,在数据量大的时候高斯过程变得 intractable
    • 高斯过程回归中,先验是一个高斯过程,likelihood 也是高斯的,因此得到的后验仍是高斯过程。在 likelihood 不服从高斯分布的问题中(如分类),需要对得到的后验进行 approximate 使其仍为高斯过程
    • RBF 是最常用的协方差函数,但在实际中通常需要根据问题和数据的性质选择恰当的协方差函数

参考资料

1.Carl Edward Rasmussen - Gaussian Processes for Machine Learning https://www.gaussianprocess.org/gpml/chapters/RW.pdf 2.MLSS 2012 J. Cunningham - Gaussian Processes for Machine Learning https://www.columbia.edu/~jwp2128/Teaching/E6892/papers/mlss2012_cunningham_gaussian_processes.pdf 3.Martin Krasser's blog- Gaussian Processes https://krasserm.github.io/2018/03/19/gaussian-processes/ 4.scikit-learn GaussianProcessRegressor https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.GaussianProcessRegressor.html

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2020-10-23,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 AI算法与图像处理 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
使用核模型高斯过程(KMGPs)进行数据建模
核模型高斯过程(KMGPs)作为一种复杂的工具可以处理各种数据集的复杂性。他通过核函数来扩展高斯过程的传统概念。本文将深入探讨kmgp的理论基础、实际应用以及它们所面临的挑战。
deephub
2024/01/29
2410
使用核模型高斯过程(KMGPs)进行数据建模
机器学习最强调参方法!高斯过程与贝叶斯优化
机器学习模型中有大量需要事先进行人为设定的参数,比如说神经网络训练的batch-size,XGBoost等集成学习模型的树相关参数,我们将这类不是经过模型训练得到的参数叫做超参数(Hyperparameter)。人为的对超参数调整的过程也就是我们熟知的调参。
石晓文
2021/03/24
5.2K0
机器学习最强调参方法!高斯过程与贝叶斯优化
高斯过程回归与sklearn代码实现
高斯过程回归是一个强大而灵活的非参回归工具,在机器学习和统计中经常应用。在处理输入和输出是连续变量且关系不明确的问题中尤其有用。高斯过程回归是一种贝尔斯方法,能用于预测概率建模,这使得其在优化、时间序列预测等方面成为重要工具。高斯过程回归有关于高斯过程,高斯过程本质是一系列的随机变量,其中任何有限的变量组合都有相同的高斯分布。高斯过程可以被视为一种函数的分布。
用户10150864
2025/01/17
2120
图文详解高斯过程(一)——含代码
作者:Alex Bridgland 编译:Bot 编者按:高斯过程(Gaussian process)是概率论和统计学中的一个重要概念,它同时也被认为是一种机器学习算法,广泛应用于诸多领域。为了帮助入门者更好地理解这一简单易用的方法,近日国外机器学习开发者Alex Bridgland在博客中图文并茂地解释了高斯过程,并授权论智将文章分享给中国读者。 注:本文为系列第一篇,虽用可视化形式弱化了数学推导,但仍假设读者具备一定机器学习基础。 现如今,高斯过程可能称不上是机器学习领域的炒作核心,但它仍然活跃在研究的
企鹅号小编
2018/02/12
2.6K0
图文详解高斯过程(一)——含代码
SVM系列(五):手写SVM实现对指定数据集的分类(完结)
  本篇博文主要是对SVM系列博客的一个实践,手写SVM来简单地对指定数据集进行分类。
Cyril-KI
2022/07/29
1.1K0
SVM系列(五):手写SVM实现对指定数据集的分类(完结)
高斯过程
为了计算充分统计量,即后验预测分布的均值和协方差矩阵,我们用下面代码实现公式(4)和(5)
用户3577892
2020/07/01
2K0
高斯过程
算法金 | 一个强大的算法模型,GPR !!
高斯过程回归(GPR)是一种非参数化的贝叶斯方法,用于解决回归问题。与传统的线性回归模型不同,GPR 能够通过指定的核函数捕捉复杂的非线性关系,并提供不确定性的估计。在本文中,我们将详细介绍 GPR 算法的定义、核心思想和数学基础,并通过实例展示其在实际应用中的效果。
算法金
2024/07/06
2910
算法金 | 一个强大的算法模型,GPR !!
深入解析高斯过程:数学理论、重要概念和直观可视化全解
与其他算法相比,高斯过程不那么流行,但是如果你只有少量的数据,那么可以首先高斯过程。在这篇文章中,我将详细介绍高斯过程。并可视化和Python实现来解释高斯过程的数学理论。
deephub
2024/07/01
3090
深入解析高斯过程:数学理论、重要概念和直观可视化全解
【机器学习】第二部分下:决策树回归
年龄:1-青年,2-中年,3-老年 学历:1-本科,2-硕士,3-博士 经历:1-出道,2-一般,3-老手,4-骨灰 性别:1-男性,2-女性
杨丝儿
2022/02/17
8990
【机器学习】第二部分下:决策树回归
(转载) 浅谈高斯过程回归
  在训练集中,我们有3个点 x_1, x_2, x_3,   以及这3个点对应的结果,f1,f2,f3. (如图) 这三个返回值可以有噪声,也可以没有。我们先假设没有。
marsggbo
2018/10/11
3.6K1
(转载) 浅谈高斯过程回归
金融风控的迁移学习及实践(Tabular Data)
机器学习有一个基本假设:数据同分布。可参考之前这篇介绍:《数据不同分布,怎么整?》 然而,现实中的数据情况通常有点坎坷,数据不同分布的也很常见。那已有的大量其他领域的数据如何利用在当前领域的任务呢?这也是迁移学习所要解决的!
算法进阶
2023/08/28
7060
金融风控的迁移学习及实践(Tabular Data)
基于sklearn的主成分分析理论部分代码实现
理论部分 特征降维 特征降维是无监督学习的一种应用:将n维的数据降维为m维的数据(n>m)。可应用于数据压缩等领域 主成分分析(PCA) 主成分分析是一种常用的特征降维方法,对于m维的数据A,可以降维获得一个n维的数据B(m>n),满足$B = f(A)$且$A \approx g(f(A))$,其中f(x)为编码函数,g(x)为解码函数。 当进行主成分分析时,优化目标为$c = argmin ||x - g(c)||_{2}$,其中c为编码,g(c)为解码函数 代码实现 导入数据集 import nump
月见樽
2018/04/27
9270
用Python拟合两个高斯分布及其在密度函数上的表现
要拟合两个高斯分布并可视化它们的密度函数,您可以使用Python中的scipy.stats模块来拟合分布,并使用matplotlib来绘制密度函数。下面我将演示了如何拟合两个高斯分布并绘制它们的密度函数:
华科云商小徐
2024/03/04
4060
从数学到实现,全面回顾高斯过程中的函数最优化
作者: Jonathan Landy 机器之心编译 参与:白悦、蒋思源 高斯过程可以被认为是一种机器学习算法,它利用点与点之间同质性的度量作为核函数,以从输入的训练数据预测未知点的值。本文从理论推导和实现详细地介绍了高斯过程,并在后面提供了用它来近似求未知函数最优解的方法。 我们回顾了高斯过程(GP)拟合数据所需的数学和代码,最后得出一个常用应用的 demo——通过高斯过程搜索法快速实现函数最小化。下面的动图演示了这种方法的动态过程,其中红色的点是从红色曲线采样的样本。使用这些样本,我们试图利用 GP 尽快
Spark学习技巧
2018/03/20
2K0
从数学到实现,全面回顾高斯过程中的函数最优化
高斯混合模型:GMM和期望最大化算法的理论和代码实现
高斯混合模型(gmm)是将数据表示为高斯(正态)分布的混合的统计模型。这些模型可用于识别数据集中的组,并捕获数据分布的复杂、多模态结构。
deephub
2023/12/04
6380
高斯混合模型:GMM和期望最大化算法的理论和代码实现
【学习】说说高斯过程回归
作者:冯牡丹 今天起会陆续写一些机器学习的notes,这次介绍一个很酷的idea,aka 高斯过程回归(Gaussian Process Regression)。 网上讲高斯过程回归的文章很少,且往往从高斯过程讲起,我比较不以为然:高斯过程回归(GPR), 终究是个离散的事情,用连续的高斯过程( GP) 来阐述,简直是杀鸡用牛刀。所以我们这次直接从离散的问题搞起,然后把高斯过程逆推出来。 这篇博客的主要目的是解释高斯过程回归这个主意是怎么想出来的,模型多了去了,为毛要用它。 这篇博客次要目的是我买了一个su
小莹莹
2018/04/23
5.3K1
【学习】说说高斯过程回归
【机器学习】支持向量机原理及例题详解
我们先从回顾一下Logistic回归,看看Logistic回归是如何演变为支持向量机的。
全栈程序员站长
2022/11/07
8160
算法金 | 一个强大的算法模型,GP !!
高斯过程算法是一种强大的非参数机器学习方法,广泛应用于回归、分类和优化等任务中。其核心思想是利用高斯分布来描述数据的分布,通过核函数来度量数据之间的相似性。与传统的机器学习方法相比,高斯过程在处理小样本数据和不确定性估计方面具有独特的优势。
算法金
2024/06/13
3390
算法金 | 一个强大的算法模型,GP !!
逻辑回归实战:手写代码实现对马疝病数据集(horseColic)的分类预测
有关逻辑回归的具体推导请见:机器学习之逻辑回归(Logistics Regression)
Cyril-KI
2022/07/29
6270
逻辑回归实战:手写代码实现对马疝病数据集(horseColic)的分类预测
Python机器学习教程—岭回归的原理和实现
在某些场景下,线性回归无法给出一个效果好的预测模型,那么就需要使用线性回归的升级版,去面对更复杂的应用场景,本文所记录的岭回归便是线性回归的一个升级版。
丹牛Daniel
2022/11/18
1.6K0
Python机器学习教程—岭回归的原理和实现
推荐阅读
相关推荐
使用核模型高斯过程(KMGPs)进行数据建模
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档
本文部分代码块支持一键运行,欢迎体验
本文部分代码块支持一键运行,欢迎体验