接上一篇文章大模型相关技术-初识RAG-腾讯云开发者社区-腾讯云 (tencent.com),我们已经对RAG(搜索增强)有了一定的了解,知道了为什么需要RAG和RAG的技术基石,本篇我们将详细学习一下RAG的两大关键技术中的embedding
在自然语言处理(NLP)领域,分词和Embedding是两个基础且重要的概念。分词是将文本切分为单词或词汇单元的过程,而Embedding入则是将这些词汇转换为可供机器学习模型处理的数值向量。下面将结合分词技术,详细解释大模型中Embedding入技术。
分词是将连续的文本序列分割成一个个独立的词汇单元的过程。在英语等使用空格分隔词汇的语言中,分词相对简单;而在汉语、日语等没有明显词汇界限的语言中,分词则是一个复杂的任务,通常需要借助特定的算法来识别词汇边界。
分词算法通常包括以下几种:
普通的全文检索用了基于规则的分词,比如著名的IKAnayzer,他的实现算法是“正向迭代最细粒度切分算法”,基本逻辑为:
Embedding是将词汇转换为实数向量(无监督)的过程,这些向量能够捕捉词汇之间的语义关系。在大模型中,Embedding通常是模型的第一层,负责将输入的文本数据转换为可供后续层处理的数值形式。
Embedding入技术的关键特性包括:
常见的Embedding模型有:
目前主流的embedding模型评测结果:BCEmbedding/Docs/EvaluationSummary/embedding_eval_summary.md at master · netease-youdao/BCEmbedding (github.com)
有一个比较有意思的场景大家可能都遇到过,那就是各种信息流网站推送的推荐,我们盲猜一下推荐内容的来源,小王正在看文章《雪佛兰全尺寸SUV 太浩也许是你最终的选择》,当我点开这篇文章的时候embeddingModel将我的文章内容向量化,同时发起向量检索,找出匹配度高的文章,作为信息流不断地推给我,这也就是为什么推荐的新闻、视频越看越多?
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。