Loading [MathJax]/jax/output/CommonHTML/config.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >为什么不建议你使用SELECT *

为什么不建议你使用SELECT *

原创
作者头像
蝉沐风
修改于 2022-08-05 08:09:07
修改于 2022-08-05 08:09:07
2.6K012
代码可运行
举报
文章被收录于专栏:蝉沐风的码场蝉沐风的码场
运行总次数:12
代码可运行

作者: 蝉沐风 作者网站:www.chanmufeng.com

“不要使用SELECT *”几乎已经成为了MySQL使用的一条金科玉律,就连《阿里Java开发手册》也明确表示不得使用*作为查询的字段列表,更是让这条规则拥有了权威的加持。

阿里Java开发手册
阿里Java开发手册

不过我在开发过程中直接使用SELECT *还是比较多的,原因有两个:

  1. 因为简单,开发效率非常高,而且如果后期频繁添加或修改字段,SQL语句也不需要改变;
  2. 我认为过早优化是个不好的习惯,除非在一开始就能确定你最终实际需要的字段是什么,并为之建立恰当的索引;否则,我选择遇到麻烦的时候再对SQL进行优化,当然前提是这个麻烦并不致命。

但是我们总得知道为什么不建议直接使用SELECT *,本文从4个方面给出理由。

1. 不必要的磁盘I/O

我们知道 MySQL 本质上是将用户记录存储在磁盘上,因此查询操作就是一种进行磁盘IO的行为(前提是要查询的记录没有缓存在内存中)。

查询的字段越多,说明要读取的内容也就越多,因此会增大磁盘 IO 开销。尤其是当某些字段是 TEXTMEDIUMTEXT或者BLOB 等类型的时候,效果尤为明显。

那使用SELECT *会不会使MySQL占用更多的内存呢?

理论上不会,因为对于Server层而言,并非是在内存中存储完整的结果集之后一下子传给客户端,而是每从存储引擎获取到一行,就写到一个叫做net_buffer的内存空间中,这个内存的大小由系统变量net_buffer_length来控制,默认是16KB;当net_buffer写满之后再往本地网络栈的内存空间socket send buffer中写数据发送给客户端,发送成功(客户端读取完成)后清空net_buffer,然后继续读取下一行并写入。

也就是说,默认情况下,结果集占用的内存空间最大不过是net_buffer_length大小罢了,不会因为多几个字段就占用额外的内存空间。

2. 加重网络时延

承接上一点,虽然每次都是把socket send buffer中的数据发送给客户端,单次看来数据量不大,可架不住真的有人用*把TEXTMEDIUMTEXT或者BLOB 类型的字段也查出来了,总数据量大了,这就直接导致网络传输的次数变多了。

如果MySQL和应用程序不在同一台机器,这种开销非常明显。即使MySQL服务器和客户端是在同一台机器上,使用的协议还是TCP,通信也是需要额外的时间。

3. 无法使用覆盖索引

为了说明这个问题,我们需要建一个表

代码语言:sql
AI代码解释
复制
CREATE TABLE `user_innodb` (
  `id` int NOT NULL AUTO_INCREMENT,
  `name` varchar(255) DEFAULT NULL,
  `gender` tinyint(1) DEFAULT NULL,
  `phone` varchar(11) DEFAULT NULL,
  PRIMARY KEY (`id`),
  KEY `IDX_NAME_PHONE` (`name`,`phone`) USING BTREE
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci;

我们创建了一个存储引擎为InnoDB的表user_innodb,并设置id为主键,另外为namephone创建了联合索引,最后向表中随机初始化了500W+条数据。

InnoDB会自动为主键id创建一棵名为主键索引(又叫做聚簇索引)的B+树,这个B+树的最重要的特点就是叶子节点包含了完整的用户记录,大概长这个样子。

主键索引
主键索引

如果我们执行这个语句

代码语言:sql
AI代码解释
复制
SELECT * FROM user_innodb WHERE name = '蝉沐风';

使用EXPLAIN查看一下语句的执行计划:

发现这个SQL语句会使用到IDX_NAME_PHONE索引,这是一个二级索引。二级索引的叶子节点长这个样子:

InnoDB存储引擎会根据搜索条件在该二级索引的叶子节点中找到name蝉沐风的记录,但是二级索引中只记录了namephone和主键id字段(谁让我们用的是SELECT *呢),因此InnoDB需要拿着主键id去主键索引中查找这一条完整的记录,这个过程叫做回表

想一下,如果二级索引的叶子节点上有我们想要的所有数据,是不是就不需要回表了呢?是的,这就是覆盖索引

举个例子,我们恰好只想搜索namephone以及主键字段。

代码语言:sql
AI代码解释
复制
SELECT id, name,  phone FROM user_innodb WHERE name = "蝉沐风";

使用EXPLAIN查看一下语句的执行计划:

可以看到Extra一列显示Using index,表示我们的查询列表以及搜索条件中只包含属于某个索引的列,也就是使用了覆盖索引,能够直接摒弃回表操作,大幅度提高查询效率。

4. 可能拖慢JOIN连接查询

我们创建两张表t1t2进行连接操作来说明接下来的问题,并向t1表中插入了100条数据,向t2中插入了1000条数据。

代码语言:sql
AI代码解释
复制
CREATE TABLE `t1` (
  `id` int NOT NULL,
  `m` int DEFAULT NULL,
  `n` int DEFAULT NULL,
  PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT;

CREATE TABLE `t2` (
  `id` int NOT NULL,
  `m` int DEFAULT NULL,
  `n` int DEFAULT NULL,
  PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT;

如果我们执行下面这条语句

代码语言:sql
AI代码解释
复制
SELECT * FROM t1 STRAIGHT_JOIN t2 ON t1.m = t2.m;

这里我使用了STRAIGHT_JOIN强制令t1表作为驱动表,t2表作为被驱动表

对于连接查询而言,驱动表只会被访问一遍,而被驱动表却要被访问好多遍,具体的访问次数取决于驱动表中符合查询记录的记录条数。由于已经强制确定了驱动表和被驱动表,下面我们说一下两表连接的本质:

  1. t1作为驱动表,针对驱动表的过滤条件,执行对t1表的查询。因为没有过滤条件,也就是获取t1表的所有数据;
  2. 对上一步中获取到的结果集中的每一条记录,都分别到被驱动表中,根据连接过滤条件查找匹配记录

用伪代码表示的话整个过程是这样的:

代码语言:c
代码运行次数:0
运行
AI代码解释
复制
// t1Res是针对驱动表t1过滤之后的结果集
for (t1Row : t1Res){
  // t2是完整的被驱动表
  for(t2Row : t2){
  	if (满足join条件 && 满足t2的过滤条件){
      发送给客户端
    }  
  }
}

这种方法最简单,但同时性能也是最差,这种方式叫做嵌套循环连接(Nested-LoopJoin,NLJ)。怎么加快连接速度呢?

其中一个办法就是创建索引,最好是在被驱动表(t2)连接条件涉及到的字段上创建索引,毕竟被驱动表需要被查询好多次,而且对被驱动表的访问本质上就是个单表查询而已(因为t1结果集定了,每次连接t2的查询条件也就定死了)。

既然使用了索引,为了避免重蹈无法使用覆盖索引的覆辙,我们也应该尽量不要直接SELECT *,而是将真正用到的字段作为查询列,并为其建立适当的索引。

但是如果我们不使用索引,MySQL就真的按照嵌套循环查询的方式进行连接查询吗?当然不是,毕竟这种嵌套循环查询实在是太慢了!

在MySQL8.0之前,MySQL提供了基于块的嵌套循环连接(Block Nested-Loop Join,BLJ)方法,MySQL8.0又推出了hash join方法,这两种方法都是为了解决一个问题而提出的,那就是尽量减少被驱动表的访问次数。

这两种方法都用到了一个叫做join buffer的固定大小的内存区域,其中存储着若干条驱动表结果集中的记录(这两种方法的区别就是存储的形式不同而已),如此一来,把被驱动表的记录加载到内存的时候,一次性和join buffer中多条驱动表中的记录做匹配,因为匹配的过程都是在内存中完成的,所以这样可以显著减少被驱动表的I/O代价,大大减少了重复从磁盘上加载被驱动表的代价。使用join buffer的过程如下图所示:

join buffer示意图
join buffer示意图

我们看一下上面的连接查询的执行计划,发现确实使用到了hash join(前提是没有为t2表的连接查询字段创建索引,否则就会使用索引,不会使用join buffer)。

最好的情况是join buffer足够大,能容纳驱动表结果集中的所有记录,这样只需要访问一次被驱动表就可以完成连接操作了。我们可以使用join_buffer_size这个系统变量进行配置,默认大小为256KB。如果还装不下,就得分批把驱动表的结果集放到join buffer中了,在内存中对比完成之后,清空join buffer再装入下一批结果集,直到连接完成为止。

重点来了!并不是驱动表记录的所有列都会被放到join buffer中,只有查询列表中的列和过滤条件中的列才会被放到join buffer中,所以再次提醒我们,最好不要把*作为查询列表,只需要把我们关心的列放到查询列表就好了,这样还可以在join buffer中放置更多的记录,减少分批的次数,也就自然减少了对被驱动表的访问次数。


原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
你必须懂的一些MySQL索引技巧
为了更好地进行解释,我创建了一个存储引擎为InnoDB的表user_innodb,并批量初始化了500W+条数据。包含主键id、姓名字段(name)、性别字段(gender,用0,1表示不同性别)、手机号字段(phone),并为name和phone字段创建了联合索引。
蝉沐风
2022/08/11
6140
你必须懂的一些MySQL索引技巧
最详细的 MySQL 执行计划和索引优化!
不管是工作中,还是面试中,关于mysql的explain执行计划以及索引优化,都是非常值得关注的。
田维常
2023/08/31
8860
最详细的 MySQL 执行计划和索引优化!
MySQL索引(六)索引优化补充,分页查询、多表查询、统计查询
本文若未特意说明使用的数据表,均为 MySQL索引(四)常见的索引优化手段 中的示例表。
鳄鱼儿
2024/05/21
2770
MySQL索引(六)索引优化补充,分页查询、多表查询、统计查询
Mysql几种join连接算法
相信有开发或DBA小伙伴,对于mysql处理多表关联方式或者说性能方面一直不太满意,对于开发提交的join查询,一般都是比较抗拒的,从而建议将join进行拆分,避免join带来的性能问题,同时也避免了程序与数据库带来网络开销的问题
黎明大大
2020/09/17
2.7K0
Mysql几种join连接算法
从根儿上理解MySQL索引
我创建了一个存储引擎为InnoDB的表user_innodb,其中包含主键id、姓名字段(name)、性别字段(gender,用0,1表示不同性别)、手机号字段(phone),并批量初始化了500W+条数据。
蝉沐风
2022/08/06
4760
从根儿上理解MySQL索引
MySQL中的join语句
在MySQL中,join语句想必大家都不陌生,今天我们围绕join语句展开,说一些可能平时不关注的知识点。
AsiaYe
2020/05/27
2.2K0
面试之前,MySQL表连接必须过关!——表连接的原理
我们知道,所谓表连接就是把各个表中的记录都取出来进行依次匹配,最后把匹配组合的记录一起发送给客户端。比如下面把t1表和t2表连接起来的过程如下图
砖业洋__
2023/05/06
2.1K0
面试之前,MySQL表连接必须过关!——表连接的原理
最完整的Explain总结,SQL优化不再困难
先看看具体有哪些字段: mysql> EXPLAIN SELECT 1; 其实除了以SELECT开头的查询语句,其余的DELETE、INSERT、REPLACE以及UPDATE语句前边都可以加上EXPLAIN这个词儿,用来查看这些语句的执行计划 建两张测试表: CREATE TABLE t1 (     id INT NOT NULL AUTO_INCREMENT,     key1 VARCHAR(100),     key2 VARCHAR(100),     key3 VARCHAR(100),  
程序猿DD
2023/04/17
6520
最完整的Explain总结,SQL优化不再困难
34 | join语句的使用
在选择Join算法时,会有优先级,理论上会优先判断能否使用INLJ、BNLJ: Index Nested-LoopJoin > Block Nested-Loop Join > Simple Nested-Loop Join
HaC
2020/12/30
8470
34 | join语句的使用
Mysql优化秘籍心法
(1)连接器:主要负责跟客户端建立连接,获取权限,维持和管理链接。 (2)查询缓存:优先在缓存中进行查询,如果查到了则直接返回,如果缓存中查不到,再去数据库查询。
用户8568307
2022/03/14
1K0
Mysql优化秘籍心法
MySQL - Join关联查询优化 --- NLJ及BNL 算法初探
两个表 t1 和 t2 , 一样的,包括索引信息 a 字段有索引 b字段没有索引。
小小工匠
2021/08/17
1.6K0
Mysql 中令人稀里糊涂的Explain
本文想和大家来聊聊Mysql中的执行计划,一条SQL语句经过了查询优化器模块分析后,会得到一个执行计划,通过这个执行计划,我们可以知道该条SQL语句具体采用的多表连接顺序是什么,对于每个表具体采用的访问方法是什么 . . .
大忽悠爱学习
2023/10/11
3490
Mysql 中令人稀里糊涂的Explain
Mysql的SQL优化指北
在一次和技术大佬的聊天中被问到,平时我是怎么做Mysql的优化的?在这个问题上我只回答出了几点,感觉回答的不够完美,所以我打算整理一次SQL的优化问题。
luozhiyun
2020/02/11
9990
神奇的 SQL 之 联表细节 → MySQL JOIN 的执行过程(一)
  我:嗨,老板娘,有冰红茶没   老板娘:有   我:多少钱一瓶   老板娘:3块   我:给我来一瓶,给,3块   老板娘:来,你的冰红茶   我:玩呐,我要冰红茶,你给我个瓶盖干哈?   老板娘:这是再来一瓶,我家卖完了,你去隔壁家换一下
青石路
2019/12/10
1K0
神奇的 SQL 之 联表细节 → MySQL JOIN 的执行过程(一)
Mysql专栏 - mysql索引(三)
上一节我们详细解释了mysql的聚簇索引部分以及mysql的索引使用匹配规则,其中最重要的内容是最左匹配的规则,由此可以推导出很多规则的应用,所以需要重点进行关,而其他的内容只需要学习即可。
阿东
2021/11/02
6140
第10章_索引优化与查询优化
🧑个人简介:大家好,我是 shark-Gao,一个想要与大家共同进步的男人😉😉
程序员Leo
2023/08/02
4720
第10章_索引优化与查询优化
MySQL 8.0曾经最让人期待的新特性
Hash Join作为表连接的基础连接类型,各大关系型数据库(譬如Oracle、sqlserver、Postgres等)很早都支持了Hash Join这种连接类型。作为关系型数据库领域的领袖,Oracle数据库支持三种主流的连接类型:Nested Loop Join、Hash Join 和 Sort Merge Join。而作为最流行的关系型数据库的MySQL 却一直没有支持Hash Join,这点一直为人诟病。千呼万唤始出来,MySQL 8.0.18开始终于支持了Hash Join的连接算法。MySQL 8.0 的所有新特性中,Hash Join 曾经最让我期待的一个新特性。
吹水老王
2022/05/29
8950
MySQL 8.0曾经最让人期待的新特性
MySQL 8.0 OCP (1Z0-908) 考点精析-性能优化考点5:表连接算法(join algorithm)
我们知道对于Oracle的表连接,根据SQL连接条件主要支持如下三种连接方法(算法):
SQLplusDB
2023/08/17
5630
MySQL 8.0 OCP (1Z0-908) 考点精析-性能优化考点5:表连接算法(join algorithm)
Join,left join,right join(1)--连接原理(三十九)
前面说了mysql优化器访问数据库的方法有const,ref,ref_or_null,range,index,all。然后又分为条件全部是索引回表查询,和条件有非索引查询,则需要回表之后,在过滤。又有intersection合并索引和union并集索引,当两个单独二级索引查询,不是联合索引查询,可能会触发这两个索引查询,用and是intersection,用or是union查询,触发有两个注重点:
用户9919783
2022/07/26
4790
连接查询-mysql详解(五)
上篇文章说了,mysql5.6.6版本之前数据默认在系统表空间,之后默认在独立表空间,innodb因为索引和数据在一个b+树,所以两个文件,一个文件结构,一个存数据,myISAM则是三个文件。一个聚簇索引有两个段,叶子段和非叶子段,一个段有他专属的区,数据刚开始存在碎片区,不属于任何段,直属表空间。
用户9919783
2022/12/14
7740
相关推荐
你必须懂的一些MySQL索引技巧
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档
本文部分代码块支持一键运行,欢迎体验
本文部分代码块支持一键运行,欢迎体验