首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >谷歌DeepMind最新研究:对抗性攻击对人类也有效,人类和AI都会把花瓶认成猫!

谷歌DeepMind最新研究:对抗性攻击对人类也有效,人类和AI都会把花瓶认成猫!

作者头像
新智元
发布于 2024-01-11 07:41:55
发布于 2024-01-11 07:41:55
2630
举报
文章被收录于专栏:新智元新智元

新智元报道

编辑:alan

【新智元导读】神经网络由于自身的特点而容易受到对抗性攻击,然而,谷歌DeepMind的最新研究表明,我们人类的判断也会受到这种对抗性扰动的影响

人类的神经网络(大脑)和人工神经网络(ANN)的关系是什么?

有位老师曾经这样比喻:就像是老鼠和米老鼠的关系。

现实中的神经网络功能强大,但与人类的感知、学习和理解方式完全不同。

比如ANN表现出人类感知中通常没有的脆弱性,它们容易受到对抗性扰动的影响。

一个图像,可能只需修改几个像素点的值,或者添加一些噪声数据,

从人类的角度,观察不到区别,而对于图像分类网络,就会识别成完全无关的类别。

不过,谷歌DeepMind的最新研究表明,我们之前的这种看法可能是错误的!

即使是数字图像的细微变化也会影响人类的感知。

换句话说,人类的判断也会受到这种对抗性扰动的影响。

论文地址:https://www.nature.com/articles/s41467-023-40499-0

谷歌DeepMind的这篇文章发表在《自然通讯》(Nature Communications)。

论文探索了人类是否也可能在受控测试条件下,表现出对相同扰动的敏感性。

通过一系列实验,研究人员证明了这一点。

同时,这也显示了人类和机器视觉之间的相似性。

对抗性图像

对抗性图像是指对图像进行微妙的更改,从而导致AI模型对图像内容进行错误分类,——这种故意欺骗被称为对抗性攻击。

例如,攻击可以有针对性地使AI模型将花瓶归类为猫,或者是除花瓶之外的任何东西。

上图展示了对抗性攻击的过程(为了便于人类观察,中间的随机扰动做了一些夸张)。

在数字图像中,RGB图像中的每个像素的取值在0-255之间(8位深度时),数值表示单个像素的强度。

而对于对抗攻击来说,对于像素值的改变在很小的范围内,就可能达到攻击效果。

在现实世界中,对物理对象的对抗性攻击也可能成功,例如导致停车标志被误识别为限速标志。

所以,出于安全考虑,研究人员已经在研究抵御对抗性攻击和降低其风险的方法。

对抗性影响人类感知

先前的研究表明,人们可能对提供清晰形状线索的大幅度图像扰动很敏感。

然而,更细致的对抗性攻击对人类有何影响?人们是否将图像中的扰动视为无害的随机图像噪声,它会影响人类的感知吗?

为了找到答案,研究人员进行了受控行为实验。

首先拍摄一系列原始图像,并对每张图像进行了两次对抗性攻击,以产生多对扰动图像。

在下面的动画示例中,原始图像被模型归类为「花瓶」。

而由于对抗性攻击,模型以高置信度将受到干扰的两幅图像进行错误分类,分别为「猫」和「卡车」。

接下来,向人类参与者展示这两张图片,并提出了一个有针对性的问题:哪张图片更像猫?

虽然这两张照片看起来都不像猫,但他们不得不做出选择。

通常,受试者认为自己随意做出了选择,但事实果真如此吗?

如果大脑对微妙的对抗性攻击不敏感,则受试者选择每张图片的概率为50%。

然而实验发现,选择率(即人的感知偏差)要实实在在的高于偶然性(50%),而且实际上图片像素的调整是很少的。

从参与者的角度来看,感觉就像他们被要求区分两个几乎相同的图像。然而,之前的研究表明,人们在做出选择时会利用微弱的感知信号,——尽管这些信号太弱而无法表达信心或意识。

在这个的例子中,我们可能会看到一个花瓶,但大脑中的一些活动告诉我们,它有猫的影子。

上图展示了成对的对抗图像。最上面的一对图像受到微妙的扰动,最大幅度为2个像素,导致神经网络将它们分别错误地分类为「卡车」和「猫」。(志愿者被问到「哪个更像猫?」)

下边的一对图像扰动更明显,最大幅度为16像素,被神经网络错误地归类为「椅子」和「羊」。(这次的问题是「哪个更像绵羊?」)

在每个实验中,参与者在一半以上的时间里可靠地选择了与目标问题相对应的对抗图像。虽然人类视觉不像机器视觉那样容易受到对抗性扰动的影响,但这些扰动仍然会使人类偏向于机器做出的决定。

如果人类的感知可能会受到对抗性图像的影响,那么这将是一个全新的但很关键的安全问题。

这需要我们深入研究探索人工智能视觉系统行为和人类感知的异同,并构建更安全的人工智能系统。

论文细节

生成对抗性扰动的标准程序从预训练的ANN分类器开始,该分类器将RGB图像映射到一组固定类上的概率分布。

对图像的任何更改(例如增加特定像素的红色强度)都会对输出概率分布产生轻微变化。

对抗性图像通过搜索(梯度下降)来获得原始图像的扰动,该扰动导致 ANN 降低分配给正确类别的概率(非针对性攻击)或将高概率分配给某些指定的替代类别(针对性攻击)。

为了确保扰动不会偏离原始图像太远,在对抗性机器学习文献中经常应用L (∞) 范数约束,指定任何像素都不能偏离其原始值超过±ε,ε通常远小于 [0–255] 像素强度范围。

该约束适用于每个RGB颜色平面中的像素。虽然这种限制并不能阻止个体检测到图像的变化,但通过适当选择ε,在受扰动的图像中指示原始图像类别的主要信号大多完好无损。

实验

在最初的实验中,作者研究了人类对短暂、遮蔽的对抗性图像的分类反应。

通过限制暴露时间来增加分类错误,该实验旨在提高个体对刺激物某些方面的敏感度,否则这些刺激物可能不会影响分类决策。

对真实类别T的图像进行了对抗性扰动,通过对扰动进行优化,使ANN倾向于将图像错误分类为A。参与者被要求在T和A之间做出强制选择。

研究人员还在对照图像上对参与者进行了测试,对照图像是通过自上而下翻转在A条件下获得的对抗性扰动图像形成的。

这种简单的转换打破了对抗性扰动与图像之间像素到像素的对应关系,在很大程度上消除了对抗性扰动对ANN的影响,同时保留了扰动的规范和其他统计数据。

结果表明,与对照组图像相比,参与者更有可能将扰动图像判断为A类别。

上面的实验1使用了简短的遮蔽演示,以限制原始图像类别(主要信号)对反应的影响,从而揭示对对抗性扰动(从属信号)的敏感性。

研究人员还设计了另外三个具有相同目标的实验,但避免了大范围扰动和有限曝光观看的需要。

在这些实验中,图像中的主要信号不能系统地引导反应选择,从而使从属信号的影响得以显现。

在每个实验中,都会出现一对几乎相同的未遮蔽刺激物,并且在选择反应之前一直保持可见。这对刺激物具有相同的主导信号,它们都是对同一底层图像的调制,但具有不同的从属信号。参与者需要选择更像目标类别实例的图像。

在实验2中,两个刺激物都是属于T类的图像,其中一个经过扰动,ANN预测它更像T类,另一个经过扰动,被预测为更不像T类。

在实验3中,刺激物是一幅属于真实类别T的图像,其中一幅被扰动以改变ANN的分类,使其向目标对抗类别A靠拢,另一幅则使用相同的扰动,但左右翻转作为对照条件。

这种对照的作用是保留扰动的规范和其他统计量,但比实验1中的对照更为保守,因为图像的左右两边可能比图像的上下部分具有更相似的统计量。

实验4中的一对图像也是对真实类别T的调制,一个被扰动得更像A类,一个更像第三类。试验交替要求参与者选择更像A的图像,或者更像第三类的图像。

在实验2-4中,每张图像的人类感知偏差与ANN的偏差显著正相关。扰动幅度从2到16不等,小于以前对人类参与者研究的扰动,并且与对抗性机器学习研究中使用的扰动相似。

令人惊讶的是,即使是2个像素强度水平的扰动也足以可靠地影响人类感知。

实验2的优势在于要求参与者做出直觉判断(例如,两张被扰动的猫图像中哪一个更像猫);

然而,实验2允许对抗性扰动仅通过锐化或模糊图像,即可使图像或多或少像猫一样。

实验3的优势在于,匹配了所比较的扰动的所有统计数据,而不仅仅是扰动的最大幅度。

但是,匹配扰动统计并不能确保扰动在添加到图像中时同样可感知,因此,参与者可能根据图像失真进行选择。

实验4的优势在于,它证明了参与者对被问的问题很敏感,因为相同的图像对会根据提出的问题产生系统性不同的回答。

然而,实验4要求参与者回答一个看似荒谬的问题(例如,两个煎蛋卷图像中的哪一个看起来更像猫?),导致问题解释方式的可变性。

综上所述,实验2-4提供了趋于一致的证据,表明即使扰动幅度非常小,且观看时间不受限制,对人工智能网络产生强烈影响的从属对抗信号,也会在相同方向上影响人类的感知和判断。

此外,延长观察时间(自然感知的环境),是对抗性扰动产生实际后果的关键。

参考资料:

https://deepmind.google/discover/blog/images-altered-to-trick-machine-vision-can-influence-humans-too/

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2024-01-07,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 新智元 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
学界 | 精准防御对抗性攻击,清华大学提出对抗正则化训练方法DeepDefense
选自arXiv 作者:Ziang Yan等 机器之心编译 参与:刘晓坤、黄小天 本文提出了一个名为 DeepDefense 的训练方案,其核心思想是把基于对抗性扰动的正则化项整合进分类目标函数,从而使模型可以学习直接而精确地防御对抗性攻击。在 MNIST、CIFAR-10 和 ImageNet 上的扩展实验证明了该方法可以显著提高不同深度学习模型对高强度对抗攻击的鲁棒性,同时还不会牺牲准确率。 虽然深度神经网络(DNN)在许多挑战性的计算机视觉任务中都取得了当前最优的表现,但在对抗样本(在人类感知上和真实图
机器之心
2018/05/09
1.4K0
基于编码注入的对抗性NLP攻击
研究表明,机器学习系统在理论和实践中都容易受到对抗样本的影响。到目前为止,此类攻击主要针对视觉模型,利用人与机器感知之间的差距。尽管基于文本的模型也受到对抗性样本的攻击,但此类攻击难以保持语义和不可区分性。在本文中探索了一大类对抗样本,这些样本可用于在黑盒设置中攻击基于文本的模型,而无需对输入进行任何人类可感知的视觉修改。使用人眼无法察觉的特定于编码的扰动来操纵从神经机器翻译管道到网络搜索引擎的各种自然语言处理 (NLP) 系统的输出。通过一次难以察觉的编码注入——不可见字符(invisible character)、同形文字(homoglyph)、重新排序(reordering)或删除(deletion)——攻击者可以显着降低易受攻击模型的性能,通过三次注入后,大多数模型可以在功能上被破坏。除了 Facebook 和 IBM 发布的开源模型之外,本文攻击还针对当前部署的商业系统,包括 Microsoft 和 Google的系统。这一系列新颖的攻击对许多语言处理系统构成了重大威胁:攻击者可以有针对性地影响系统,而无需对底层模型进行任何假设。结论是,基于文本的 NLP 系统需要仔细的输入清理,就像传统应用程序一样,鉴于此类系统现在正在快速大规模部署,因此需要架构师和操作者的关注。
CDra90n
2023/07/08
8260
基于编码注入的对抗性NLP攻击
对抗性攻击的原理简介
由于机器学习算法的输入形式是一种数值型向量(numeric vectors),所以攻击者就会通过设计一种有针对性的数值型向量从而让机器学习模型做出误判,这便被称为对抗性攻击。和其他攻击不同,对抗性攻击主要发生在构造对抗性数据的时候,该对抗性数据就如正常数据一样输入机器学习模型并得到欺骗的识别结果。
deephub
2021/12/28
6940
对抗性攻击的原理简介
MIT最新研究:对抗样本才不是bug呢,人家,人家是特征~
到目前为止,业内对于对抗样本的流行观点是,其源于模型的“怪癖”,一旦训练算法和数据收集方面取得足够的进展,那么它们终将消失。其他常见观点还包括,对抗样本要么是输入空间高维度的结果之一,要么是因为有限样本现象(finite-samplephenomena)。
大数据文摘
2019/05/17
4110
MIT最新研究:对抗样本才不是bug呢,人家,人家是特征~
Hinton团队胶囊网络新进展:两种方法加持,精准检测和防御对抗性攻击
在本文中,我们提出了一种基于胶囊层(Capsule layer,Sabour et al., 2017; Qin et al., 2020)的网络和检测机制,它可以精确地检测到攻击,对于未检测到的攻击,它通常也可以迫使攻击者生成类似于目标类的图像(从而使它们被偏转)。我们的网络结构由两部分组成:对输入进行分类的胶囊分类网络,以及根据预测的胶囊(predicted capsule)的姿态参数(pose parameters)重建输入图像的重建网络。
机器之心
2020/04/02
7640
机器学习对抗性攻击
随着人工智能和机器学习技术在互联网的各个领域的广泛应用,其受攻击的可能性,以及其是否具备强抗打击能力一直是安全界一直关注的。之前关于机器学习模型攻击的探讨常常局限于对训练数据的污染。由于其模型经常趋向于封闭式的部署,该手段在真实的情况中并不实际可行。在GeekPwn2016硅谷分会场上,来自北美工业界和学术界的顶尖安全专家们针对当前流行的图形对象识别、语音识别的场景,为大家揭示了如何通过构造对抗性攻击数据,要么让其与源数据的差别细微到人类无法通过感官辨识到,要么该差别对人类感知没有本质变化,而机器学习模型可
用户1737318
2018/06/06
1.8K0
用100元的支票骗到100万:看看对抗性攻击是怎么为非作歹的
作者:Roman Trusov 编译:元元、桑桑、徐凌霄、钱天培、高宁、余志文 Google brain最近的研究表明,任何机器学习的分类器都可以被误导,然后给出错误的预测。甚至,只需要利用一些小技巧,你就可以让分类器输出几乎任何你想要的结果。 机器学习可能会被“误导”的这一现象,正变得越发令人担忧。考虑到越来越多的系统正在使用AI技术,而且很多系统对保障我们舒适而安全的生活至关重要,比如说,银行、监控系统、自动取款机(ATM)、笔记本电脑上的人脸识别系统,以及研发中的自动驾驶汽车。关于人工智能的安全问题,
大数据文摘
2018/05/24
4790
TPAMI 2024 | 像素就是你所需要的一切:用于显着目标检测的对抗性时空集成主动学习
尽管弱监督技术可以减少标记工作量,但目前尚不清楚使用弱监督数据(例如点注释)训练的显著性模型是否能达到与全监督版本相当的性能。本文试图回答这个未被探索的问题,通过证明一个假设:存在一个点标记数据集,在其上训练的显著性模型能够达到与在密集注释数据集上训练时相当的性能。为了证明这个猜想,我们提出了一种新颖而有效的对抗性时空集成主动学习方法。我们的贡献有四点:1)我们提出的对抗性攻击触发不确定性能够克服现有主动学习方法的过度自信,并准确定位这些不确定像素。2)我们提出的时空集成策略不仅实现了出色的性能,而且显著降低了模型的计算成本。3)我们提出的关系感知多样性采样能够克服过采样问题,同时通过考虑这些采样像素之间的关系来提升模型性能。4)我们为此类点标记数据集的存在提供了理论证明。实验结果表明,我们的方法可以找到这样一个点标记数据集,其中在该数据集上训练的显著性模型仅用每张图像十个注释点就获得了全监督版本的98%-99%的性能。代码可在https://github.com/wuzhenyubuaa/ASTE-AL找到。
小白学视觉
2024/12/20
1810
TPAMI 2024 | 像素就是你所需要的一切:用于显着目标检测的对抗性时空集成主动学习
对抗性攻击研究:图片中可被操纵的细微特征会欺骗AI
对抗性攻击对于AI来说可能是致命的,最近研究发现,在停车标志上放置一个贴纸实际上可以欺骗AI,使其对标志进行错误分类,这可能会导致自动驾驶汽车不会停下。
AiTechYun
2019/05/17
6440
对抗性攻击研究:图片中可被操纵的细微特征会欺骗AI
Reddit热议MIT新发现:对抗样本不是bug,而是有意义的数据特征!
“对抗样本”(adversarial examples)几乎可以说是机器学习中的一大“隐患”,其造成的对抗攻击可以扰乱神经网络模型,造成分类错误、识别不到等错误输出。
新智元
2019/05/15
7390
Reddit热议MIT新发现:对抗样本不是bug,而是有意义的数据特征!
学界 | 综述论文:对抗攻击的12种攻击方法和15种防御方法
选自arXiv 作者:Naveed Akhtar等 机器之心编译 参与:许迪、刘晓坤 这篇文章首次展示了在对抗攻击领域的综合考察。本文是为了比机器视觉更广泛的社区而写的,假设了读者只有基本的深度学习和图像处理知识。不管怎样,这里也为感兴趣的读者讨论了有重要贡献的技术细节。机器之心重点摘要了第 3 节的攻击方法(12 种)和第 6 节的防御方法(15 种),详情请参考原文。 尽管深度学习在很多计算机视觉领域的任务上表现出色,Szegedy et al. [22] 第一次发现了深度神经网络在图像分类领域存在有意
机器之心
2018/05/10
1.8K0
快速适应or容易崩溃?元学习中的对抗攻击初探究
元学习容易受到对抗攻击吗?这篇论文在小样本(few-shot)分类的问题下,对元学习中的对抗攻击进行了初步的研究。一系列实验结果表明,本文所提出的攻击策略可以轻松破解元学习器,即元学习是容易受到攻击的。
AI科技评论
2020/09/22
1.1K0
快速适应or容易崩溃?元学习中的对抗攻击初探究
避免自动驾驶事故,CV领域如何检测物理攻击?
对抗性攻击的概念首先由 Goodfellow 等人提出 [6],近年来,这一问题引起了越来越多研究人员的关注,对抗性攻击的方法也逐渐从算法领域进入到物理世界,出现了物理对抗性攻击。文献[1] 中首次提出了利用掩模方法将对抗性扰动集中到一个小区域,并对带有涂鸦的真实交通标志实施物理攻击。与基于噪声的对抗性攻击相比,物理攻击降低了攻击难度,进一步损害了深度学习技术的实用性和可靠性。
机器之心
2022/02/23
6210
避免自动驾驶事故,CV领域如何检测物理攻击?
机器学习中对抗性攻击的介绍和示例
对抗样本是专门设计的输入,旨在欺骗机器学习 (ML) 模型,从而导致高置信度的错误分类。有趣的是这种方式对图像所做的修改虽然温和,但足以欺骗 ML 模型。在这篇文章中,我想展示微小的变化如何导致灾难性的影响。下图总结了对抗性攻击的过程:
deephub
2021/09/15
9480
机器学习中对抗性攻击的介绍和示例
华中科技大学伍冬睿教授团队:生理计算中的对抗攻击与防御综述
生理计算使用人类的生理数据作为系统的实时输入。其包括或者与脑机接口、情感计算、自适应自动化、健康信息学以及基于生理信号的生物识别等领域高度重合。生理计算增加了从用户到计算机的通信带宽,但也易受各种类型的对抗攻击,其中攻击者故意操纵训练和/或测试样例来劫持机器学习算法的输出,可能导致用户困惑、受挫、受伤甚至死亡。然而,生理计算系统的脆弱性没有得到足够的重视,并且学界目前不存在针对生理计算领域的对抗攻击的综述。本文系统性综述了生理计算主要研究领域、不同类型的对抗攻击、其在生理计算上的应用以及相应的防御措施,从而填补了这一空白。希望本综述能吸引更多关于生理计算系统脆弱性的研究兴趣,更重要的是,能让更多人关注并投入使生理计算系统更加安全的防御策略的研究。
脑机接口社区
2022/09/22
1.3K0
华中科技大学伍冬睿教授团队:生理计算中的对抗攻击与防御综述
动态 | 谷歌大脑新奇发现:分类误差为零的模型就不存在对抗性样本了
AI 科技评论按:谷歌大脑近期的一篇新论文对对抗性样本做了多方面的理论性研究,不仅首次发现了简单数据分布下对抗性样本的分布特性,而且得出了「分类误差为零的模型不存在对抗性样本」这样的大家此前不曾想象过
AI科技评论
2018/03/14
7760
动态 | 谷歌大脑新奇发现:分类误差为零的模型就不存在对抗性样本了
敲重点!一文详解解决对抗性样本问题的新方法——L2正则化法
【导读】许多研究已经证明深度神经网络容易受到对抗性样本现象(adversarial example phenomenon)的影响:到目前为止测试的所有模型都可以通过图像的微小扰动使其分类显著改变。为了解决这个问题研究人员也在不断探索新方法,L2 正则化也被引入作为一种新技术。本文中人工智能头条将从基本问题——线性分类问题开始给大家介绍解决对抗性样本现象的一些新视角。
用户1737318
2018/07/23
1.4K0
敲重点!一文详解解决对抗性样本问题的新方法——L2正则化法
担心自己照片被Deepfake利用?试试波士顿大学这项新研究
近日,来自波士顿大学的研究者在一篇论文中介绍了 deepfake 新研究,看论文标题与效果,似乎只要输入我们的图片,deepfake 换脸模型就不能再拿我们的图片作为素材制作小视频。
机器之心
2020/03/25
4570
学界 | 清华朱军团队探索DNN内部架构,采用对抗性例子监督网络生成及错误
AI科技评论了解到,近期清华信息科学与技术联合实验室,智能技术与系统国家重点实验室,生物启发计算研究中心和清华大学计算机科学技术学院联合发表的论文《使用对抗性例子提高深度神经网络性能》,探索了深度神经网络的内部架构,并提出了一种方法使人类可以监督网络的生成和网络发生错误的位置。 作者包括 Dong Yingpeng, Hang Su,Jun Zhu和Fan Bao。 论文链接:https://arxiv.org/pdf/1708.05493.pdf,AI科技评论编译。 深度神经网络(DNNs)在很多领域中都
AI科技评论
2018/03/13
7350
学界 | 清华朱军团队探索DNN内部架构,采用对抗性例子监督网络生成及错误
既能欺骗机器,也能迷惑人类!Goodfellow等人提出新一代对抗样本
选自arXiv 作者:Gamaleldin F. Elsayed等 机器之心编译 参与:路雪、黄小天 机器学习模型易受对抗样本的影响,导致识别错误,那么人类呢?在本文中,谷歌大脑 Ian Goodfellow 等人通过最新技术创建了首个欺骗人类的对抗样本,其实现过程是把已知参数和架构的计算机视觉模型的对抗样本迁移至未获取参数和架构的其他模型,并通过修改模型更好地匹配人类视觉系统的初始处理。 引言 机器学习模型很容易受到对抗样本的愚弄:输入经过对抗样本优化后导致模型输出错误的分类(Szegedy et al.
机器之心
2018/05/11
1K2
推荐阅读
学界 | 精准防御对抗性攻击,清华大学提出对抗正则化训练方法DeepDefense
1.4K0
基于编码注入的对抗性NLP攻击
8260
对抗性攻击的原理简介
6940
MIT最新研究:对抗样本才不是bug呢,人家,人家是特征~
4110
Hinton团队胶囊网络新进展:两种方法加持,精准检测和防御对抗性攻击
7640
机器学习对抗性攻击
1.8K0
用100元的支票骗到100万:看看对抗性攻击是怎么为非作歹的
4790
TPAMI 2024 | 像素就是你所需要的一切:用于显着目标检测的对抗性时空集成主动学习
1810
对抗性攻击研究:图片中可被操纵的细微特征会欺骗AI
6440
Reddit热议MIT新发现:对抗样本不是bug,而是有意义的数据特征!
7390
学界 | 综述论文:对抗攻击的12种攻击方法和15种防御方法
1.8K0
快速适应or容易崩溃?元学习中的对抗攻击初探究
1.1K0
避免自动驾驶事故,CV领域如何检测物理攻击?
6210
机器学习中对抗性攻击的介绍和示例
9480
华中科技大学伍冬睿教授团队:生理计算中的对抗攻击与防御综述
1.3K0
动态 | 谷歌大脑新奇发现:分类误差为零的模型就不存在对抗性样本了
7760
敲重点!一文详解解决对抗性样本问题的新方法——L2正则化法
1.4K0
担心自己照片被Deepfake利用?试试波士顿大学这项新研究
4570
学界 | 清华朱军团队探索DNN内部架构,采用对抗性例子监督网络生成及错误
7350
既能欺骗机器,也能迷惑人类!Goodfellow等人提出新一代对抗样本
1K2
相关推荐
学界 | 精准防御对抗性攻击,清华大学提出对抗正则化训练方法DeepDefense
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档