Loading [MathJax]/jax/output/CommonHTML/config.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >《Flutter —应用页面跳转》

《Flutter —应用页面跳转》

原创
作者头像
CatEatFish
修改于 2020-07-09 06:22:36
修改于 2020-07-09 06:22:36
1.3K0
举报
文章被收录于专栏:干活分享干活分享

1.页面跳转

代码语言:txt
AI代码解释
复制
Navigator.push(
      context,
      new MaterialPageRoute(
        builder: (context) => new APage(),
      ),
    );

2.连续跳转与弹栈

example:

A —> B —>C—>A

1.设置别名

代码语言:txt
AI代码解释
复制
//设置别名方式一:
routes: {
            A': (context) => A(),
            B': (context) => B(),
           C': (context) => C(),
        }
//设置别名方式二:
 RouteSettings(
                  name: 'B'
                )

2.跳转界面

A->B:

代码语言:txt
AI代码解释
复制
Navigator.push(
              context,
              //创建一个路由
              new MaterialPageRoute(
                builder: (context) => BPage(),
              //设置下一个界面的名字(就是设置别名)
                settings: RouteSettings(
                  name: 'B'
                )
              ),
            );

B->C:

代码语言:txt
AI代码解释
复制
Navigator.push(
              context,
              //创建一个路由
              new MaterialPageRoute(
                builder: (context) => BPage(),
              //设置下一个界面的名字
                settings: RouteSettings(
                  name: 'C'
                )
              ),
            );

C->A:

代码语言:txt
AI代码解释
复制
//弹栈,将A到C之间的界面弹栈(BC 弹栈),
Navigator.popUntil(context, ModalRoute.withName('A'));

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
【技术白皮书】第三章:文字表格信息抽取模型介绍——实体抽取方法:NER模型(上)
深度学习是一个由多个处理层组成的机器学习领域,用于学习具有多个抽象层次的数据表示。典型的层次是人工神经网络,由前向传递和后向传递组成。正向传递计算来自前一层的输入的加权和,并通过非线性函数传递结果。向后传递是通过导数链规则计算目标函数相对于多层模块堆栈权重的梯度。深度学习的关键优势在于表示学习的能力以及向量表示和神经处理赋予的语义合成能力。这允许机器输入原始数据,并自动发现分类或检测所需的潜在表示和处理。
合合技术团队
2022/08/17
1.3K0
【技术白皮书】第三章:文字表格信息抽取模型介绍——实体抽取方法:NER模型(上)
NLP笔记——NLP概述
在字符上使用 CNN 或 LSTM 以获得基于字符的词表示的做法现在相当普遍,特别是对于形态信息重要或有许多未知单词的丰富的语言和任务,效果更加明显。据我所知,序列标签使用基于字符的表示(Lample 等人,2016;普兰克等人,2016),可以减轻在计算成本增加的情况下必须处理固定词汇表的需要,并支持完全基于字符的 NMT (Ling 等人, 2016;Lee 等人,2017)。
UM_CC
2022/09/22
7270
​迁移学习在NLP中的演化:从基础到前沿
论文标题:Evolution of Transfer Learning in Natural Language Processing
AI科技评论
2019/10/31
9100
​迁移学习在NLP中的演化:从基础到前沿
一文读懂深度学习:从神经元到BERT
自然语言处理领域的殿堂标志 BERT 并非横空出世,背后有它的发展原理。今天,蚂蚁金服财富对话算法团队整理对比了深度学习模型在自然语言处理领域的发展历程。从简易的神经元到当前最复杂的BERT模型,深入浅出地介绍了深度学习在 NLP 领域进展,并结合工业界给出了未来的 NLP 的应用方向,相信读完这篇文章,你对深度学习的整体脉络会有更加深刻认识。
Ai学习的老章
2019/05/27
1.3K0
从Word Embedding到Bert模型——自然语言处理预训练技术发展史
作者简介:张俊林,中国中文信息学会理事,目前在新浪微博 AI Lab 担任资深算法专家。在此之前,张俊林曾经在阿里巴巴任资深技术专家,以及在百度和用友担任技术经理及技术总监等职务。同时他是技术书籍《这就是搜索引擎:核心技术详解》(该书荣获全国第十二届输出版优秀图书奖)、《大数据日知录:架构与算法》的作者。
zenRRan
2018/12/17
1.4K0
万字长文概述NLP中的深度学习技术
自然语言处理(NLP)是指对人类语言进行自动分析和表示的计算技术,这种计算技术由一系列理论驱动。NLP 研究从打孔纸带和批处理的时代就开始发展,那时分析一个句子需要多达 7 分钟的时间。到了现在谷歌等的时代,数百万网页可以在不到一秒钟内处理完成。NLP 使计算机能够执行大量自然语言相关的任务,如句子结构解析、词性标注、机器翻译和对话系统等。
机器之心
2019/03/12
1.2K0
万字长文概述NLP中的深度学习技术
【完结】 12篇文章带你完全进入NLP领域,掌握核心技术
专栏《NLP》第一阶段正式完结了。在本专栏中,我们从NLP中常用的机器学习算法开始,介绍了NLP中常用的算法和模型;从朴素贝叶斯讲到XLnet,特征抽取器从RNN讲到transformerXL。这篇文章我们就一起回顾一下这些文章。
用户1508658
2019/08/29
1.3K0
NLP之从word2vec到ELMO GPT再到BERT与attention transformer过程笔记与详解
在NLP自然语言处理学习或者发展过程中,在13年word2vec word embedding后,人们发现一个单词通过Word Embedding表示,很容易找到语义相近的单词,但单一词向量表示,不可避免一词多义问题。于是迎来Google的ELMO transformer BERT等动态表征模型,BERT模型更是刷新了GLUE benchmark的11项测试任务最高记录。
大鹅
2021/02/21
3.4K0
NLP | 百度 ERNIE - 简析1.0 与 2.0
本文以通俗易懂的语言介绍了百度提出的 持续学习语义理解框架 ERNIE 的基本原理,和利用 ERNIE 来解决下游 NLP 任务的过程。
用户3946442
2022/04/11
8350
NLP | 百度 ERNIE - 简析1.0 与 2.0
【NLP】从word2vec, ELMo到BERT
还记得不久之前的机器阅读理解领域,微软和阿里在SQuAD上分别以R-Net+和SLQA超过人类,百度在MS MARCO上凭借V-Net霸榜并在BLEU上超过人类。这些网络可以说一个比一个复杂,似乎“如何设计出一个更work的task-specific的网络"变成了NLP领域政治正确的研究方向。而在这种风向下,不管word2vec也好,glove也好,fasttext也好,都只能充当一个锦上添花的作用。说好的迁移学习、预训练呢?在NLP似乎始终没成主角。
yuquanle
2020/02/21
9280
词向量(2)--从ELMo到Bert
其实,本文到这里,"核心内容"就已经讲完啦...当然如果你还不困的话,可以继续往下看,应该会有助于睡眠的
流川枫
2020/04/24
1.5K0
【每周NLP论文推荐】从预训练模型掌握NLP的基本发展脉络
读论文是做AI的人必需要下的功夫,所以咱们开通了专栏《每周NLP论文推荐》。本着有三AI的一贯原则,即系统性学习,所以每次的论文推荐也会是成系统的,争取每次能够把一个领域内的“故事”基本说清楚。
用户1508658
2019/08/01
7790
【每周NLP论文推荐】从预训练模型掌握NLP的基本发展脉络
广告行业中那些趣事系列3:NLP中的巨星BERT
摘要:上一篇广告行业中那些趣事系列2:BERT实战NLP文本分类任务(附github源码)通过项目实战讲解了如何使用BERT模型来完成文本分类任务。本篇则从理论的角度讲解BERT模型的前世今生。BERT虽然在模型创新的角度来说并不是非常出色,但它是近几年NLP领域杰出成果的集大成者。BERT大火最重要的原因是效果好,通用性强两大优点。可以说BERT的出现是NLP领域里具有里程碑意义的大事件。本篇主要讲解NLP里面的Word Embedding预训练技术的演化史,从最初的Word2Vec到ELMO、GPT,再到今天的巨星BERT诞生,还会讲解如何改造BERT模型去对接上游任务以及BERT模型本身的创新点。
数据拾光者
2022/05/05
3600
广告行业中那些趣事系列3:NLP中的巨星BERT
浅谈NLP:从词向量到Transformer| 技术创作特训营第一期
是时候把之前学习NLP的知识整理下了。大模型火了后,又涌出好多Transfomer相关的文章,回想当时刚接触NLP的时候,还是从word2vec开始...很久前看的东西都快忘记了,所以想做一些总结。
languageX
2023/08/14
1.8K1
自然语言处理中的迁移学习(上)
本文转载自公众号「哈工大SCIR」(微信ID:HIt_SCIR),该公众号为哈尔滨工业大学社会计算与信息检索研究中心(刘挺教授为中心主任)的师生的信息分享平台,本文作者为哈工大SCIR 徐啸。
AI科技评论
2019/10/23
1.4K0
自然语言处理中的迁移学习(上)
后BERT时代:15个预训练模型对比分析与关键点探究
在小夕之前写过的《NLP的游戏规则从此改写?从word2vec, ELMo到BERT》一文中,介绍了从word2vec到ELMo再到BERT的发展路径。而在BERT出现之后的这大半年的时间里,模型预训练的方法又被Google、Facebook、微软、百度、OpenAI等极少数几个玩得起游戏的核心玩家反复迭代了若干版,一次次的刷新我们这些吃瓜群众的案板上的瓜。
zenRRan
2019/08/21
2.2K0
后BERT时代:15个预训练模型对比分析与关键点探究
命名实体识别的深度学习综述
A Survey on Deep Learning for Named Entity Recognition
马上科普尚尚
2020/09/24
1.9K0
命名实体识别的深度学习综述
【AI大模型】ELMo模型介绍:深度理解语言模型的嵌入艺术
ELMo最底层的词嵌入采用CNN对字符级进行编码, 本质就是获得一个静态的词嵌入向量作为网络的底层输入.
小言从不摸鱼
2024/11/24
2740
【AI大模型】ELMo模型介绍:深度理解语言模型的嵌入艺术
【NLP】预训练模型综述
摘要:近年来,预训练模型的出现将自然语言处理带入了一个新的时代。本文概述了面向自然语言处理领域的预训练模型技术。我们首先概述了预训练模型及其发展历史。并详细介绍自然语言处理领域的经典预训练模型,包括最经典的预训练模型技术和现在一系列新式的有启发意义的预训练模型。然后梳理了这些预训练模型在自然语言处理领域的优势和预训练模型的两种主流分类。最后,对预训练技术的未来发展趋势进行了展望。
黄博的机器学习圈子
2020/05/26
2.2K0
【NLP】预训练模型综述
BERT预训练模型的演进过程!(附代码)
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
mantch
2019/09/29
1.6K0
BERT预训练模型的演进过程!(附代码)
推荐阅读
相关推荐
【技术白皮书】第三章:文字表格信息抽取模型介绍——实体抽取方法:NER模型(上)
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档