本节来介绍一个用于了解多个基因组的同线性和直系同源模式分析及可视化的R包GENESPACE,软件运行需要依赖其它软件如OrthoFinder、MCScanX等,分析环境配置可以一站式完成数据的分析及可视化同时具有很高的自定性。小编下面进行部分的结果展示,软件安装等更多的详细内容请参考作者的官方文档。
(https://htmlpreview.github.io/?https://github.com/jtlovell/tutorials/blob/main/riparianGuide.html)
if (!requireNamespace("devtools", quietly = TRUE))
install.packages("devtools")
devtools::install_github("jtlovell/GENESPACE")
library(GENESPACE)
genomeRepo <- "~/path/to/store/rawGenomes"
wd <- "~/path/to/genespace/workingDirectory"
path2mcscanx <- "~/path/to/MCScanX/"
urls <- c(
human ="000/001/405/GCF_000001405.40_GRCh38.p14/GCF_000001405.40_GRCh38.p14_",
mouse = "000/001/635/GCF_000001635.27_GRCm39/GCF_000001635.27_GRCm39_",
platypus = "004/115/215/GCF_004115215.2_mOrnAna1.pri.v4/GCF_004115215.2_mOrnAna1.pri.v4_",
chicken = "016/699/485/GCF_016699485.2_bGalGal1.mat.broiler.GRCg7b/GCF_016699485.2_bGalGal1.mat.broiler.GRCg7b_",
sandLizard = "009/819/535/GCF_009819535.1_rLacAgi1.pri/GCF_009819535.1_rLacAgi1.pri_")
genomes2run <- names(urls)
urls <- file.path("https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF", urls)
translatedCDS <- sprintf("%stranslated_cds.faa.gz", urls)
geneGff <- sprintf("%sgenomic.gff.gz", urls)
names(translatedCDS) <- genomes2run
names(geneGff) <- genomes2run
writeDirs <- file.path(genomeRepo, genomes2run)
names(writeDirs) <- genomes2run
for(i in genomes2run){
print(i)
if(!dir.exists(writeDirs[i]))
dir.create(writeDirs[i])
download.file(
url = geneGff[i],
destfile = file.path(writeDirs[i], basename(geneGff[i])))
download.file(
url = translatedCDS[i],
destfile = file.path(writeDirs[i], basename(translatedCDS[i])))
}
genomes2run <- c("human", "mouse", "platypus", "chicken", "sandLizard")
parsedPaths <- parse_annotations(
rawGenomeRepo = genomeRepo,
genomeDirs = genomes2run,
genomeIDs = genomes2run,
presets = "ncbi",
genespaceWd = wd)
gpar <- init_genespace(
wd = wd,
ploidy = 1,
path2mcscanx = path2mcscanx)
out <- run_genespace(gpar, overwrite = T)
ripDat <- plot_riparian(
gsParam = out,
refGenome = "human",
forceRecalcBlocks = FALSE)
ripDat <- plot_riparian(
out,
refGenome = "human",
useOrder = FALSE,
useRegions = FALSE)
ripDat <- plot_riparian(
gsParam = out,
refGenome = "mouse",
genomeIDs = c("mouse", "human", "platypus", "chicken"),
forceRecalcBlocks = FALSE)
ripDat <- plot_riparian(
gsParam = out,
#reorderBySynteny = FALSE,
syntenyWeight = 0,
refGenome = "human")
ggthemes <- ggplot2::theme(
panel.background = ggplot2::element_rect(fill = "white"))
customPal <- colorRampPalette(
c("darkorange", "skyblue", "darkblue", "purple", "darkred", "salmon"))
ripDat <- plot_riparian(
gsParam = out,
palette = customPal,
braidAlpha = .75,
chrFill = "lightgrey",
addThemes = ggthemes,
refGenome = "human")
roi <- data.frame(
genome = c("human", "chicken"),
chr = c("X", "Z"),
color = c("#FAAA1D", "#17B5C5"))
ripDat <- plot_riparian(
gsParam = out,
highlightBed = roi,
refGenome = "human",
genomeIDs = c("sandLizard", "chicken", "human", "mouse", "platypus"),
customRefChrOrder = c("X", 1:22))
可以看到内容还是非常的丰富,感兴趣的朋友可仔细阅读作者的官方文档;有需要学习R语言个性化数据可视化的朋友,欢迎到小编的淘宝店铺 R语言数据分析指南购买2023年度会员文档同步更新中售价149元,内容主要包括各种高分论文的图表分析复现以及一些个性化图表的绘制均包含数据+代码;按照往年数据小编年产出约在150+以上
购买后微信发小编订单截图即邀请进新的会员交流群,小编的文档为按年售卖,只包含当年度的除系列课程外的文档,有需要往年文档的朋友也可下单购买,需要了解更多信息的朋友欢迎交流咨询。
本文系外文翻译,前往查看
如有侵权,请联系 cloudcommunity@tencent.com 删除。
本文系外文翻译,前往查看
如有侵权,请联系 cloudcommunity@tencent.com 删除。
扫码关注腾讯云开发者
领取腾讯云代金券
Copyright © 2013 - 2025 Tencent Cloud. All Rights Reserved. 腾讯云 版权所有
深圳市腾讯计算机系统有限公司 ICP备案/许可证号:粤B2-20090059 深公网安备号 44030502008569
腾讯云计算(北京)有限责任公司 京ICP证150476号 | 京ICP备11018762号 | 京公网安备号11010802020287
Copyright © 2013 - 2025 Tencent Cloud.
All Rights Reserved. 腾讯云 版权所有