Loading [MathJax]/jax/output/CommonHTML/config.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >Nature Reviews Neuroscience:迈向一个有生物学注解的大脑连接体

Nature Reviews Neuroscience:迈向一个有生物学注解的大脑连接体

原创
作者头像
悦影科技
发布于 2023-12-08 02:28:37
发布于 2023-12-08 02:28:37
2680
举报

大脑是一个交错的神经回路网络。在现代连接组学中,大脑连接通常被编码为节点和边的网络,抽象出局部神经元群的丰富生物细节。然而,网络节点的生物学注释——如基因表达、细胞结构、神经递质受体或内在动力学——可以很容易地测量并覆盖在网络模型上。在这里,我们回顾了如何将连接体表示为注释网络并进行分析。带注释的连接体使我们能够重新定义网络的结构特征,并将大脑区域的连接模式与其潜在的生物学联系起来。新出现的研究表明,带注释的连接体有助于建立更真实的大脑网络形成、神经动力学和疾病传播模型。最后,注释可用于推断全新的区域间关系,并构建补充现有连接体表示的新型网络。总之,生物学注释的连接体提供了一种令人信服的方法来研究与局部生物学特征相一致的神经连接。

1. 简介

成像和追踪技术的进步产生了越来越详细的神经系统接图。这些被称为连接体的接线图编码了神经元素之间的连接模式。在过去的15年中,主要的范式是将连接体表示为,其中节点表示单个神经元或神经元群,边表示解剖投射或功能相互作用。

图模型已经成为网络神经科学的通用语言,有助于量化大脑网络的架构特征。其中包括区域特定的连接概况,功能相似的区域形成空间连续社区的趋势,以及促进信号整合的一小部分不成比例的良好连接的枢纽节点。这些特征已经在多个空间尺度和重建技术以及多种模式生物中被观察到,包括无脊椎动物、鸟类、啮齿动物、猫科动物和灵长类动物。这些无所不在的结构特征表明了大脑连接体的保守和普遍的连接原则。

然而,连接体通常被表示和分析为具有相同节点的图,抽象掉了可能驱动宏观结构-功能耦合的重要微观结构特征(包括细胞结构、神经递质受体谱和层流分化)。神经元群之间的宏观连接如何与它们的微观特征相关?伴随而来的成像技术和数据科学的进步,使我们能够生成和获取跨多种模式的高分辨率大脑地图。通过将这些生物注释图叠加到连接体上,我们可以在神经科学中生成一种新的数据对象:注释连接体

在这里,我们回顾了注释连接组学的新兴领域。我们认为,丰富了生物学特征的连接组表征为量化和阐明大脑网络组织开辟了根本的新途径。我们回顾了新的发现,以及经典的和新兴的理论,如何局部注释与神经连接。然后,我们探讨了方法和概念上的进步,包括适应注释网络的网络理论测量,将注释纳入网络形成、网络功能和疾病传播的动态模型,以及解开注释与大脑网络拓扑和几何之间的关系。最后,我们概述了如何使用生物注释重建全新的连接模式类。在整个过程中,我们专注于一个单一的主题:通过联合考虑连接体结构和生物学注释,可以解决关于大脑组织的哪些新问题?

2. 拥抱区域异质性

连接组学的传统工作流程是将大脑分割成一组离散的区域,并关注它们的连接模式。多个子领域松散地串联出现,重点是使用网络理论方法量化建筑特征,使用连接模式识别个体,将连接模式与认知和行为联系起来,分离疾病的连接标记,绘制跨系统发育和个体发生的连接模式。所有这些方法都隐含着大脑区域是相同的想法,因为这些方法都没有明确考虑到节点生物学的差异

然而,使用各种组织学、成像和记录技术的标准方案,如微阵列和单细胞测序、显微镜、放射自显影、磁共振成像(MRI)、脑电图(EEG)和脑磁图(MEG)以及正电子发射断层扫描(PET),可以很容易地生成高分辨率的大脑地图。这些图谱描绘了多种结构和功能属性的空间分布,包括基因转录、神经递质受体和转运体、细胞密度、细胞类型和形态、层流分化、髓鞘形成、灰质形态、进化和发育扩张、代谢、内在电磁动力学和血流动力学。网络节点也可以使用元分析特征进行注释,例如在特定任务期间激活的倾向或疾病脆弱性。在网络神经科学中,节点也传统地根据它们与更大的离散类(例如,内在网络或皮质类型)的隶属关系进行注释。最后,我们注意到网络边可以类似地用生物元数据进行注释(框1)。这些地图越来越多地通过开放访问的存储库和工具箱共享,协同努力标准化坐标系统和工作流程。

我们如何使用这些数据集来构建一个带注释的连接体?一旦有了生物图谱,对连接体进行注释就很简单了。生物地图中的顶点或体素值根据用于重建连接体的相同图谱被细分为分区(图1)。最常见的方法是取平均值,但也可以采用其他方法,如中位数第一主成分。如果注释没有在表面上密集采样,例如基因转录的微阵列探针或皮质电图中的颅内电极,则有必要确保离散样本与适当的分区相匹配。理想情况下,在注释中,分区边界应与空间变化对齐,以优化分区内均匀性和分区间分化。通过用生物注释给网络节点“上色”,我们现在有了丰富的大脑表征,这为发现打开了根本性的新机会。

图1 构造一个带注释的连接体。

3. 注释和神经连接

一旦生物特征图被分割并用于注释大脑网络,很自然地要问两个大脑区域的注释与它们之间的连接是如何相关的。许多研究已经探索了大脑区域是否表现出同质性混合:连接的区域比不连接的区域更相似。这种简单的布线原理似乎在广泛的属性中普遍存在,包括基因表达,细胞结构(例如,层状分化,神经元密度和形态,皮质内髓鞘),健康和临床人群的形态测定,神经递质受体和局部神经动力学。总的来说,这些结果可能反映了在发育过程中引导轴突形成的分子和基因组梯度的影响,从而导致具有相似属性的神经群体之间的连通性。在实践中,同质性混合可以很容易地使用网络理论的分类统计来量化:连接节点对之间注释值的相关性(图2a)。尽管同质性主要用于评估枢纽节点相互连接的趋势(度同质性),但这一概念更为普遍,可用于量化任何生物注释的同质性。

注释和连接性之间的关系通常被概念化为同质混合。一个未被充分探索的方向是考虑异质混合,即具有不同类别或类型注释的区域是否倾向于连。例如,富集于特定细胞类型的群体是否更倾向于与富集于不同细胞类型的神经群体相联系,或者表达特定神经递质受体的群体是否与表达不同神经递质受体的群体相联系?事实上,皮质层之间的连接是高度结构化的,具有特定层流和细胞结构特征的大脑区域之间的连接模式是不均匀的。同样,慢效和速效神经递质系统之间的相互作用在时间尺度上协调功能,从觉醒到目标导向行为。然而,受体类型之间的连接介导的混合尚不完全清楚。定量研究生物注释之间的异质性混合是理解细胞结构、化学结构和皮质-皮质连接之间复杂相互作用的一个令人兴奋的新前沿。

一个突出的例子是神经线路如何证明同质和异质混合来自非人类灵长类动物的神经解剖束追踪研究。这些研究检查了神经投射源和目标皮层区域的细胞结构,从而形成了一种称为结构模型的神经布线理论。有趣的是,他们观察到异质性混合,即从低分化到高分化区域的反馈连接起源于深层(V层和VI层),主要终止于上层(I层)。同样,从高分化区域到低分化区域的前馈连接起源于上层III层,终止于中间层(深层III层至上层V层)。这些研究还观察到同源性混合,即具有相似层流分化的区域通过起源于和终止于皮层所有层的神经投射连接起来。换句话说,神经投射模式取决于连接是亲同还是异质(从层流结构的角度来看)。生物学注释的连接体使这些理论扩展到整个人类大脑,以及层压以外的特征成为可能。

4. 注释和网络架构

除了连接和注释之间的统计关联之外,我们接下来将注意力转向在连接组学中被广泛研究的网络特征。标志性特征,如节点形成专门模块或社区的趋势,高度互联的中心的存在,以及支持集成的通信途径,可以从生物注释的角度重新定义。在这里,我们考虑如何通过结合有关生物属性的信息来丰富图论中的概念。

传统上,中枢被定义为与大脑其他部分不成比例地良好连接的大脑区域(图2b)。它们被认为在功能上很重要,并且在十多年来一直受到该领域的关注。中枢显示出特有的活动模式,以缓慢波动和高度自相关为主,这与具有许多输入的区域在更长的时间尺度和跨感官模式上整合信息的概念一致。这些神经群的生物学特征是什么,使它们适合整合和传播信号?在微观尺度上,中枢区域由具有更大树突树和更多树突棘的神经元组成,可能是为了增强整合能力。这反映在它们的转录组谱上:中枢区域显示出与树突和突触发育相关的基因转录较多。中枢也表现出更多分化的层流组织和更大的第三层神经元,这被认为支持远距离皮质-皮质通讯。这种复杂结构的能量消耗有充分的文献记载:中枢往往具有更高的代谢活性,代谢相关基因的转录更高,脑血流量更高,葡萄糖代谢更高,有氧糖酵解更高。也许正因为如此,中枢节点也更容易受到特定神经系统疾病的影响,表现出更大的皮质异常,更多的错误折叠蛋白积累,以及更多的疾病特异性风险基因表达

连接体的另一个被充分研究的特征是社区结构:区域形成强烈相互联系的社区(或“模块”)的趋势,支持专门的处理 (图2c)。模块通常是根据连接性来定义的,但是从大脑注释的角度来看,它们可以很容易地重新想象。一种方法是使用已建立的模块(例如,内在静息状态网络)并叠加注释映射,以询问特定模块(例如,视觉网络)是否为微架构特性进行了丰富。这些分析的目标是确定支持每个模块的功能特征的微体系结构特性。例如,内在网络往往具有不同的转录和代谢特征。这些差异体现在细胞结构上,例如,单峰网络比多峰网络有更多的皮质内髓磷脂,这可能提供了以更快的速度和保真度传输信号的能力。另一种方法是直接使用生物注释和连接模式来指导社区的检测。传统的社区检测方法可以扩展到既具有密集连通性又具有相似生物组成的节点群。据我们所知,这个方向在网络神经科学中探索较少,但在网络科学和统计物理学中已经存在原则性方法,包括注释随机块模型和多层社区检测。

我们通过考虑连接体的其他具有生物学意义的建筑特征来结束本节,这些特征可以通过生物学注释来丰富,包括通信途径、基序、团和腔。人们经常研究网络通信的度量,以推断节点中心性、区域间关系和大脑网络处理信息的全球能力。这些方法通常涉及跟踪信号传播的连接节点序列。信号是如何通过神经回路的?它们在途中会遇到哪些类型的神经元群(图2)?通过使用生物学属性注释通信路径中的节点序列,可以推断不同的神经元群体交换信号的方式。以类似的方式,网络基图——小的2节点、3节点或n节点子图,构成了网络的构建模块——可以被潜在地注释,以了解特定的环路配置是否与特定的微结构特征相一致(图2e)。例如,许多研究报告称,相互连接的节点链在跨物种、规模和重建技术的大脑网络中被过度代表,可能作为功能整合和循环处理的基础。高阶结构,如团和空腔,也被认为反映了神经回路参与并行与串行信息处理的能力。未来研究的一个突出问题是,这些高阶网络特征的形成和排列是否受到其底层微尺度结构的指导。

图2 注释连接体的架构特征

5. 注释增强的大脑模型

到目前为止,我们主要关注大脑网络的静态注释以及网络组织与注释的比较。但注释也可以用来为大脑网络形成、交流和疾病传播提供更动态的模型。正如我们在下面概述的那样,这些研究中的一个一致的线索是,在区域节点上赋予生物异质性可以产生更真实的大脑结构和功能模型。

系统神经科学的一个关键问题是结构连通性(神经元群之间的白质投射)与功能连通性(神经活动的共同波动)之间的关系。早期的研究集中在统计和动态模型上,将两者联系起来,但他们通常假设结构-功能耦合在整个大脑中是一致的。然而,最近的报告一致发现,结构-功能耦合是区域异质性的单峰皮质的耦合较强,而跨峰皮质的耦合较弱。同样,允许区域动态在皮层间变化的生物物理模型显示出相同的单峰-跨峰动态参数梯度,这代表了兴奋-抑制比和皮层下输入的区域差异。总的来说,这些结果开启了一种可能性,即考虑区域异质性可以帮助我们建立更好的大脑功能模型。

事实上,最近的几项研究表明,结合结构连通性和局部生物注释的模型可以更准确地预测功能动态,包括富含皮质内髓磷脂、神经递质受体和基因表达的模型(图3a)。作为一个实际的例子,demirtau和他的同事利用皮质内髓鞘图谱丰富了生物物理神经场模型。他们拟合了两类模型:一种是同质模型,其中所有节点参数都相同;另一种是异质模型,其中不同节点可能具有不同的局部微环路特征(兴奋-抑制强度和反复兴奋强度),这些特征根据皮质髓鞘图进行缩放。作者发现,异质模型更好地预测静息状态血氧水平依赖(BOLD)功能连接和MEG估计的功率谱密度,证明了注释信息动态模型的实用性。

一个平行的文献已经出现,其中生物注释被用来指导网络形成的生成模型(图3b)。在这些模型中,目标是根据简单的规则(如成本最小化(在空间近端区域之间放置连接)或一些拓扑特征的优化,如聚类或度分布),通过放置节点和/或边来概括连接组的架构和发展。这些模型可用于研究系统发育或个体发育的解剖变化序列,允许人们测试关于网络形成和实现如何随时间相互作用的理论。早期的实证研究表明,连接的存在可以通过相关基因表达或细胞类型来预测。下一步自然是建立正式的生成模型,其中除了空间(成本最小化)和拓扑规则外,边放置还受生物规则的支配。例如,最近的一份报告探讨了一组生成模型,其中连接的位置也由基因表达、皮质内髓鞘或层状分化的相似性决定。然而,仍存在许多注释,如代谢、化学结构或细胞类型,它们在网络形成中的作用尚未得到直接研究。此外,生成模型通常体现同质混合规则,在这种规则中,具有相似注释的大脑区域之间更有可能放置边。同样的方法也可以很容易地实现来测试异质混合规则的贡献。

正如生物特征塑造了网络的形成和功能动态的出现一样,它们也赋予了局部的病理脆弱性。因此,注释丰富的连接体在疾病建模中有大量的应用。越来越多的证据表明,多种综合征,特别是神经退行性疾病,是由错误折叠蛋白的跨突触传播和聚集引起的。虽然不同综合征的特异性蛋白不同(阿尔茨海默病的tau,帕金森病的α-突触核蛋白,额颞叶痴呆的TDP-43),但其扩散原理是相同的。因此,病理学的传播通常被建模为白质连接体上的引导扩散过程(图3c)。一种常见的策略是利用与疾病特异性蛋白质相关的基因转录的区域差异来扩大硅中蛋白质的合成和清除。例如,在帕金森病或其他突触核蛋白病的模型中,α-突触核蛋白的合成和清除是通过疾病相关基因(SNCA和GBA)的表达来衡量的,与在整个大脑中合成和清除是一致的同质模型相比,α-突触核蛋白的合成和清除可以更好地预测萎缩模式。进一步采用这种方法,疾病传播的单独动态模型可以建立在连接体上,这些连接体带有与特定综合征的特定亚群相关的风险基因的表达注释,例如额颞叶痴呆的遗传变异。更一般地说,生物学注释可能有助于模拟局部脆弱性,并解释许多其他脑疾病或障碍的空间模式,这些疾病或障碍不一定涉及错误折叠的蛋白质,但可能涉及不同的网络介导机制,如传播兴奋毒性或异常信号或营养因子的传播。

图3 注释增强的大脑模型

6. 几何,拓扑和注释

我们如何测试生物注释是否与网络特征相关?主要的挑战是从空间邻近性的背景效应中消除注释和连通性之间的关系。在基因组梯度的引导下,轴突生长和突触形成的渐进过程导致了一系列重叠的神经回路。因此,物理上靠近的区域有更高的相互连接的倾向,这些连接的强度可能更大。同时,靠近的区域也更倾向于共享相似的生物特征,如基因转录、细胞类型和内在的电生理节律。换句话说,空间接近性同时影响注释和连通性。因此,考虑空间自相关的推理过程对于理清连接、注释和几何之间的关系是必要的。

幸运的是,这一直是一个活跃的研究主题,并且已经开发了多种方法来随机化注释的空间布局或布线拓扑,同时控制空间自相关。对于几乎任何类型的分析,例如关联生物注释和网络特征,空间零模型允许我们构建统计参数的分布(例如,随机注释和网络特征之间的相关系数),该分布体现了零假设,即注释和连通性之间的任何观察到的关系都是由于空间自相关的被动影响。随机化注释地图的一组流行方法是非参数的“自旋测试”,它将注释投射到球体上,应用随机的角度旋转,并将注释值带回皮质表面。另一种方法是参数化模型,它估计注释图的特定统计特征,如变异函数,并生成与这些特征近似匹配的随机注释图。虽然基于自旋的空值只能应用于皮质表面,但参数化空值更通用,可以应用于皮质体积,以及皮质外结构,如皮层下或小脑。相反,随机化连接的方法通常建立在传统的边随机化算法的基础上,这样,当且仅当交换结果近似地保持边长度分布时,边被随机交换。总的来说,空间零模型测试了生物注释和网络特征之间是否存在超越空间接近效应的关系。

我们通过强调空间接近的影响不应被视为混淆,而应被视为这个空间嵌入式系统的自然和基本特征来结束本节。事实上,网络神经科学中的许多分析过程都明确地考虑了几何。例如,大脑网络形成的最先进的生成模型包括一个几何术语,该术语促进了空间上近距离群之间的连接位置。同样,在交流或疾病传播的动态模型中,传播因子(信号或错误折叠的蛋白质)被赋予了由解剖连接长度决定的速度。另外,没有明确考虑几何的分析可以很容易地重新表述,以便这样做。例如,可以根据排列的注释图来评估亲同性和亲异性,以基准衡量这些原则在空间邻近性影响之上和之外的扩展程度。

7. 注释相似度网络

虽然连接体被认为是大脑中所有网络元素和连接的集合,但还有另一种大脑连接的观点,其定义不是基于结构连接:注释相似性。在这种情况下,网络边不是物理的,而是代表了大脑区域之间关于一些注释(例如,皮质厚度,BOLD信号和基因转录)跨一些自变量(例如,参与者,时间和基因)的统计关联。换句话说,不是使用微结构或分子特征来注释大脑区域,而是使用局部注释来构建一种全新类型的网络(图4)。注释相似性通常表示为脑区域×脑区域矩阵,其中的元素是选择的相似度的统计度量。

每个版本的注释相似度都为大脑区域之间的关系提供了一个新的视角,同时保留了一套普遍存在的组织原则。也许注释相似网络的最早表现形式是代谢连通性,它是通过将参与者之间的区域葡萄糖代谢相关联得出的。这种类型的注释相似性——即,一个网络,告诉我们大脑区域是如何在个体之间就特定表型进行耦合的——也被应用于皮质厚度(解剖协方差),并且可以扩展到任何测量个体的测量(图4a)。第二种,可能也是最常见的,注释相似性的概念化是“功能连接”,即神经活动的注释如何随时间同步。该定义最常应用于功能性MRI (fMRI)的BOLD信号,但也可应用于其他时间过程,如氟脱氧葡萄糖- pet (FDG-PET)的葡萄糖代谢和EEG和MEG的电磁神经活动(图4b)。最后,出现了第三种注释相似性形式,即在每个大脑区域收集注释的多个测量值,并且这些区域指纹是相关的(图4c)。这些注释相似性网络已经为基因(相关基因表达),受体(神经递质受体相似性)和细胞类型(层流相似性)等表型构建,并告诉我们区域如何共享相似的生物构建块。有趣的是,无论注释或数据类型如何,注释相似性都随着距离的增加而降低,对于结构连接的区域来说,注释相似性更大,并且在半球之间是对称的,这表明大脑中存在共同的组织原则。

图4 注释相似度网络

有了注释相似网络,我们可以提出新的问题,关于大脑回路是如何从局部属性的汇合中产生的。例如,大脑的富人俱乐部——被认为支持信号整合的紧密相连的大脑区域——最初只是从结构连接的角度来看的。最近的研究发现,具有相似基因表达和受体密度谱的大脑区域之间存在结构丰富的俱乐部联系。通过在局部生物相似性信息的基础上定义边,注释相似性网络揭示了宏观尺度建筑特征的生物学机制。同样,使用上述图论方法(参见“注释和网络架构”),我们可以询问注释相似网络是否呈现出在更标准的结构或fmri衍生的功能连接体中没有发现的新架构特征。事实上,fdg - pet衍生的功能连接揭示了额顶叶区域的神经同步中枢:从经典结构和fmri衍生的功能连接体的角度来看,这些区域传统上不被认为是中枢。此外,形态相似性的网络结构(一个注释相似性网络,其中注释是由mri衍生的白质和灰质测量结果)已被证明随着认知表现的个体差异而变化。

最终,每个注释相似度网络只是区域间关系的一个单一视角。从共享的分子机制到动力学再到功能,这些注释相似网络反映了大脑的集成、多尺度性质。这些注释相似网络如何相互作用,以及如何与大脑的结构骨干相互作用,仍然是未来研究的一个令人兴奋的方向。事实上,随着新数据集的出现,各种注释相似度网络正在迅速被引入。这为生成新的集成网络奠定了基础,这些网络可以通过将多个注释相似网络组合成单个融合网络,也可以通过连接多尺度注释在每个节点上创建单个综合注释指纹。因此,我们设想注释连接组学的未来涉及区域间关系的整体,多尺度视角。

8. 总结

本综述总结了一个单一的、一致的、完全不令人惊讶的原则:包含有关潜在生物学的信息可以帮助我们建立更现实的连接组表征。注释为标志性架构特性(如中枢和模块)的角色增加了深度和意义。注释实际上促进了大脑网络形成、神经动力学和疾病传播的所有模型。最后,注释可以用来恢复新的区域间关系,补充现有的结构和功能网络。

我们怀着极大的惊奇考虑成像和追踪技术的现代进步将如何塑造下一代连接组学。展望未来,我们设想结合其他生物学上有意义的注释,这些注释可以可靠地测量,但在连接组学中很少被采用。这些数据包括血管系统的数据(特别是神经血管耦合的测量),空间综合基因转录和使用单细胞RNA测序(与微阵列相反)估计的细胞类型反卷积,使用放射自显像估计的受体密度,突触类型,酶和更具体的病理标记(例如,tau成像)或炎症(例如,小胶质细胞激活)。为了补充人类的注释丰富的连接组分析,在动物模型中进行的实验-我们可以获得额外的技术和更广泛的测量方法-将产生更完整的注释集,例如synaptomes, metabolomes和病理学的直接测定。更广泛地说,虽然许多研究只关注单个注释,但现在是时候进行更全面的研究,同时关注单个分析框架中整个类甚至多个类的注释。最后,现代精确成像和深度表型工作将增强我们构建个性化注释连接体的能力。

总之,生物学注释为大脑连接体增加了一个新的维度。由此产生的数学对象——带注释的连接组——开启了一种全新的思考全球连接和局部特征交织的方式。数据集、分析和理论都已就位,将开启网络神经科学令人兴奋的新篇章。

参考文献:Towards a biologically annotated brain connectome.

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
重磅综述:精神分裂症的神经影像生物标志物
摘要 精神分裂症是一种复杂的神经精神综合征,具有不同的遗传、神经生物学和表型特征。目前,没有客观的生物学指标——即生物标志物——用于指导诊断和治疗决策。神经影像学对精神分裂症中的生物标志物的探索提供了良好的方向,因为它可以捕捉分子和细胞疾病靶点或脑回路中的表型变异。这些基于生物标志物的机制或许能直接表征疾病过程的病理生理学基础,因此可以作为真正的中间或代替物。有效的生物标志物可以验证新的治疗目标或途径、预测反应、帮助患者选择治疗、确定治疗方案、并提供个性化治疗。本文讨论了一系列机制上合理的神经影像学生物标志物候选物,包括多巴胺过度活跃、N-甲基-D-天冬氨酸受体功能减弱、海马过度活跃、免疫调节障碍、连接障碍及皮质灰质体积减少。本文主要研究精神分裂症的风险、诊断、目标参与和治疗反应的假定神经影像生物标志物。最后还突出强调了为满足需求的领域,并讨论了推进生物标志物探索的策略。
悦影科技
2021/08/16
7620
重磅综述:精神分裂症的神经影像生物标志物
Nature Neuroscience:从大脑MRI中对皮层相似性网络进行稳健估计
结构相似性是磁共振成像(MRI)皮层连接组学日益关注的焦点。在这里,我们提出了形态测量逆散度(MIND),一种新的方法,基于它们的差异来估计皮层区域之间的相似性。与之前跨越3个人类数据集和1个猕猴数据集的11000次扫描的形态相似网络(MSNs)方法相比,MIND网络更可靠,更符合皮层细胞结构和对称性,与轴突连接束追踪测量更相关。来自人类T1加权MRI的MIND网络比MSNs或来自束状融合加权MRI的网络对年龄相关的变化更敏感。皮层区域之间的基因共表达与MIND网络的共表达比与MSNs网络或束造影的耦合更强。MIND网络表型也更具遗传性,特别是结构分化区域之间的连边。MIND网络分析为使用现成的MRI数据的皮层连接组学提供了一个经过生物学验证的透镜。
悦影科技
2023/10/12
6510
nature reviews neuroscience重磅综述:大规模人脑网络的结构-功能耦合
大脑的解剖结构如何精确地产生一系列复杂功能仍未完全理解。从结构到功能的映射中一个有前途的表现是大脑区域的功能活动依赖于潜在的白质结构。在这里,我们回顾了研究宏观尺度结构和功能连接之间的联系的文献,并建立了结构-功能耦合(SFC)如何比单独的特征提供更多有关大脑基本运作的信息。我们首先定义SFC,并描述用于量化它的计算方法。然后,我们回顾了研究异质SFC表达的经验研究,跨不同大脑区域、不同个体、在执行认知任务的背景下以及随时间变化的情况,以及其在促进灵活认知中的作用。最后,我们调查了结构和功能之间的耦合在神经学和精神疾病中受到的影响,并报告了异常SFC与疾病持续时间和疾病特定认知障碍的关联。通过阐明大脑结构和功能之间的动态关系在神经学和精神疾病存在时如何改变,我们的目标不仅是进一步了解它们的病因,还要将SFC确立为疾病症状和认知表现的新敏感标记。总的来说,这篇综述汇总了关于神经典型和神经非典型个体的人类大脑宏观结构和功能之间区域相互依赖的当前知识。
悦影科技
2024/11/25
4810
微生物群-肠道-大脑轴:从运动到情绪
脑肠轴在维持体内平衡中起着重要作用。许多内在和外在信号影响因子通过脑肠轴调节肠道和中枢神经系统的功能。最近,微生物群落作为调节肠脑信号传导的重要作用已经显现,微生物-肠道-脑轴的概念已经提出。本文描述了微生物脑肠轴在调节肠道和中枢神经系统功能中的作用,以及如何影响肠易激综合征、情绪和情感障碍等疾病。本文还研究了支撑这些疾病的重叠生物学结构,特别强调了神经递质血清素,它在胃肠道和大脑中都起着关键作用。尽管动物研究已经显示出很大的前景,但在这些发现转化为患者群体的诊断和治疗益处之前,还需要更多研究成果。本文发表在Gastroenterology杂志。
用户1279583
2022/06/13
1.1K0
微生物群-肠道-大脑轴:从运动到情绪
nature reviews neuroscience|注意缺陷多动障碍的神经生物学:历史挑战与新兴前沿
摘要:从遗传学到行为学的多个层面的广泛研究,都试图揭示注意缺陷多动障碍(ADHD)的机制基础,以期为这种疾病开发有效的治疗方法。尽管付出了这些努力,但 ADHD的发病机制仍然难以捉摸。在这篇综述中,我们回顾了关于 ADHD 的已有的研究成果,同时提供了一个框架,可能作为未来研究的路线图。我们强调,ADHD 是一种高度异质性的疾病,具有多种病因,需要采用多因素维度的表型,而不是固定的二分概念。我们突出了新的发现,这些发现表明对该疾病的理解应该更倾向于全脑范围的 “整体” 观点,而不是传统的定位主义框架,定位主义框架认为 ADHD 是由有限的大脑区域或网络所导致的。最后,我们强调,长期以来,旨在将神经生物学与 ADHD 表型联系起来的研究力量不足,这使得该领域难以取得进展。然而,一个以更精细的表型、先进的方法、创新的研究设计和足够的研究力量为特征的 ADHD 研究新时代正在开始,为该领域的发展奠定了良好的基础。事实上,这个领域正处于一个有前途的关键时刻,有望推进对 ADHD 的神经生物学理解,并实现其临床应用价值。
悦影科技
2025/04/07
1430
Nat. Commun. | 通过异质图学习从空间解析的转录组数据剖析肿瘤微环境
今天为大家介绍的是来自Luonan Chen团队的一篇论文。空间解析转录组学(SRT)通过分析肿瘤微环境(TME)的细胞内分子网络和细胞间通讯(CCC),实现了对TME的精确剖析。然而,缺乏对细胞、基因和组织区域之间复杂关系的计算探索,极大地限制了对TME复杂结构的解释能力。为此,作者引入了一种异质图(HG)学习方法stKeep,它整合了多模态和基因-基因相互作用,以从SRT数据中解读TME。stKeep利用HG通过结合基因、细胞和组织区域等多种节点特征来学习细胞模块和基因模块,分别识别TME内的细胞状态及其特定的基因-基因关系。此外,stKeep还通过HG推断每个细胞的CCC,并通过对比学习确保不同细胞状态下的CCC模式具有可比性。在各种癌症样本中,stKeep在解析TME方面表现优于其他工具,如检测双能基础细胞群、肿瘤性肌上皮细胞和分布在肿瘤或前沿区域的转移细胞。值得注意的是,stKeep识别出与疾病进展相关的关键转录因子、配体和受体,并通过独立临床数据的功能和生存分析进一步验证,突显其在临床预后和免疫治疗中的应用潜力。
DrugAI
2024/07/30
2180
Nat. Commun. | 通过异质图学习从空间解析的转录组数据剖析肿瘤微环境
NC:人脑皮层髓鞘形成和兴奋-抑制平衡协同调控结构-功能耦合
最近的研究表明,在人类大脑中,结构和功能连接之间的关系因区域而异,在感觉关联皮层层次上出现了耦合减少的现象。然而,驱动这种表达的生物学基础在很大程度上仍然未知。在这里,我们假设皮质内髓鞘形成和兴奋抑制(EI)平衡介导结构-功能耦合(SFC)的异质表达及其在皮质层次上的时间差异。我们采用基于图谱和体素的连接方法来分析从两组健康参与者获得的神经成像数据。我们的研究结果在六个互补的处理管道中是一致的:1)SFC及其时间方差在单峰-跨峰和颗粒-无颗粒梯度中分别减小和增加;2)髓鞘形成增加和EI比值降低与SFC刚性增强和瞬时SFC波动受限有关;3)当从颗粒状皮质区向无颗粒状皮质区穿越时,从EI比率逐渐转变为髓鞘形成作为SFC的主要预测因子。总的来说,我们的工作提供了一个概念化人脑结构-功能关系的框架,为更好地理解脱髓鞘和/或EI失衡如何诱导大脑疾病重组铺平了道路。
悦影科技
2024/01/16
2560
Nature 重磅: 3D 人类皮层类器官(hCO) 与在体鼠脑的成功融合!- MedChemExpress
今年 9 月,Neuron 发表了这样一项有趣的研究:体外神经元在模拟游戏世界中能够学习并表现出感知能力。在这项研究中,Kagan 和他的团队开发了 DishBrain 系统 (一种在结构化环境中能利用神经元固有的自适应计算能力的系统)。研究者们将 hiPSC 或 E15.5 小鼠胚胎的原代皮层细胞中提取的神经元电镀到高密度多电极阵列 (HD-MEAs) 芯片上,并通过 DishBrain 系统嵌入到类似街机游戏的 “Pong” 中。DishBrain 系统可以从神经培养中 “读取” 信息 (记录神经元在培养中的电活动),又能将感官数据 “写入” 到神经培养中 (即给神经元提供非侵入性的 “感觉” 电刺激)。并通过改变感官信息的模式,创造了不同的 “DishBrain” 环境,使神经元做出不同的响应 (类似于神经元网络中活动产生的动作电位)。
MedChemExpress
2022/12/26
4620
Nature 重磅: 3D 人类皮层类器官(hCO) 与在体鼠脑的成功融合!- MedChemExpress
NC:结构连接组学的遗传结构
摘要:由髓轴突形成长程连接,使远端大脑区域之间能够快速通信,但遗传学如何控制这些连接的强度和组织仍不清楚。我们对206名参与者的扩散磁共振成像束得出的26333种结构连接进行了全基因组关联研究,每种测量都代表了一对皮质网络、皮质下结构、皮质半球内部之间的髓鞘连接密度。在Bonferroni校正后,我们确定了30个独立的全基因组显着变异,用于研究的测量数量涉及髓鞘形成(SEMA3A)、神经突伸长和引导(NUAK1、STRN、DPYSL2、EPHA3、SEMA3A、HGF、SHTN1)、神经细胞增殖和分化(GMNCs、CELF4、HGF)、神经元迁移(CCDC88C)、细胞骨架组织(CTTNBP2、MAPT、DAAM1、MYO16、PLEC)和脑金属转运(SLC39A8)。结构连通性测量是高度多基因的,估计有9.1%的常见变异对每个测量具有非零影响,并表现出负选择的特征。结构连通性测量与各种神经精神和认知特征具有显着的遗传相关性,表明连通性改变变异往往会影响大脑健康和认知功能。在成人少突胶质细胞和多种胎儿细胞类型中染色质增加的区域,遗传性富集,表明结构连接的遗传控制由对髓鞘形成和早期大脑发育的影响介导。我们的研究结果表明,通过不同的神经发育途径对白质结构连接进行普遍的、多效性的和空间结构的遗传控制,并支持这种遗传控制与健康大脑功能的相关性。
悦影科技
2024/06/14
2030
nature neuroscience:整合脑干和皮层功能结构
脑干是中枢神经系统的基本组成部分,但它通常被排除在体内人脑映射工作之外,从而阻碍了对脑干如何影响皮质功能的全面了解。在本研究中,我们使用高分辨率 7 T功能性磁共振成像来获得一个功能性连接组,该连接组涵盖皮质和横跨中脑、脑桥和延髓的58 个脑干核。我们在脑干中发现了一组紧凑的整合中心,它们与大脑皮层有着广泛的连接。脑干和大脑皮层之间的连接模式表现为神经生理振荡节律、认知功能专业化模式和单模态-跨模态功能层次。皮质功能拓扑和脑干核之间的这种持续对齐是由多种神经递质受体和转运体的空间排列决定的。我们使用来自同一参与者的 3 T数据复制了所有发现。总的来说,这项研究表明,皮质活动的多种组织特征可以追溯到脑干。
悦影科技
2025/02/16
1520
Nature Communications:基因对人类连接组中hub连接的影响
脑网络hubs间高度连接且其内部也高度连接,为连通神经动力形成了一个重要的通信主干。但是,对该机制的研究很少。本文使用双胞胎的弥散加权磁共振成像数据,确定了基因的主要作用,表明它们优先影响人类连接组的网络hubs间的连接强度。使用转录图谱数据,结果表明连接的hubs表现出与细胞结构相似和代谢相关的转录活动的紧密耦合。最后,通过比较13个网络的生成模型,本文发现仅靠随机过程不能解释hubs的精确分布模式,另外,可以通过引入基因约束来提高模型性能。本文的研究结果表明,基因在形成hubs间的连接中起重要而优先的作用,这些连接具有功能性价值且代谢成本高。
悦影科技
2021/09/14
5920
Nature medicine重磅综述:治疗精神疾病的新方法
精神疾病是非常普遍的,往往是毁灭性的疾病,对全世界数百万人的生活产生负面影响。尽管它们的病因和诊断异质性长期以来一直对药物的发现提出了挑战,但一种新兴的基于回路的对精神疾病的理解是目前依赖试验和错误的治疗一个重要的替代。在这里,我们回顾了新的和新兴的治疗方法,特别强调了基于脑回路的精确精神病学干预的革命性潜力。本文提出了电路模型的局限性、将精确疗法推向市场的挑战以及克服这些障碍所需的关键进展。
悦影科技
2023/06/28
8760
人类小脑内在组织背后的基因图谱
人类小脑的功能多样性在很大程度上被认为更多地来自于其广泛的联系,而不是局限于其部分不变的结构。然而,小脑内在组织中连接的确定是否以及如何与微尺度基因表达相互作用仍不清楚。在这里,我们通过研究同时连接小脑功能异质性及其驱动因素的遗传基质,即连接因素,来解码小脑功能组织的遗传图谱。我们不仅鉴定了443个网络特异性基因,而且还发现它们的共表达模式与小脑内功能连接(FC)密切相关。其中90个基因也与皮质-小脑认知-边缘网络的FC有关。进一步发现这些基因的生物学功能,我们进行了“虚拟基因敲除”,通过观察基因之间的耦合和FC以及将基因分成两个子集,即,一个涉及小脑神经发育的阳性基因贡献指标(GCI+)和一个与神经传递有关的阴性基因集(GCI−)。一个更有趣的发现是,GCI−与小脑连接-行为关联显著相关,并与许多公认的与小脑功能异常密切相关的脑部疾病密切相关。我们的研究结果可以共同帮助重新思考小脑功能组织背后的遗传底物,并为神经精神疾病中涉及小脑的高阶功能和功能障碍提供可能的微宏观相互作用的机制解释。
悦影科技
2022/11/28
5040
NC:皮层微结构的神经生理特征
在整个皮层中观察到微结构的系统空间变化。这些微结构梯度反映在神经活动中,可以通过神经生理时间序列捕获。自发的神经生理动力学是如何在整个皮层组织的,以及它们是如何从异质皮层微结构中产生的,目前尚不清楚。在这里,我们通过估计来自静息状态脑磁图(MEG)信号的6800多个时间序列特征,广泛地描绘了整个人脑的区域神经生理动力学。然后,我们将区域时间序列概况映射到一个全面的多模式,多尺度的皮质微结构图谱,包括微观结构,代谢,神经递质受体,细胞类型和层流分化。我们发现神经生理动力学的主导轴反映了信号的功率谱密度和线性相关结构的特征,强调了电磁动力学的常规特征的重要性,同时识别了传统上较少受到关注的附加信息特征。此外,神经生理动力学的空间变化与多种微结构特征共定位,包括基因表达梯度、皮质髓鞘、神经递质受体和转运体、氧和葡萄糖代谢。总的来说,这项工作为研究神经活动的解剖学基础开辟了新的途径。
悦影科技
2023/11/14
3530
Molecular Psychiatry:三种主要精神疾病中的神经变异性
在主要的精神疾病(MPDs)中,人们怀疑存在大脑生理学的共同破坏。在这里,我们研究了休息时的神经变异性,这是一种成熟的脑功能行为相关标记,并探索了其在MPDs的基因表达和神经递质谱中的基础。我们招募了219名健康对照组和279名患有精神分裂症、重度抑郁症或双相情感障碍(躁狂症或抑郁状态)的患者。利用从静息态功能磁共振成像中获得的血氧合水平依赖性信号的标准差(SDBOLD)来表征神经变异性。通过偏最小二乘相关法来检验SDBOLD模式的经诊断中断及其与临床症状和认知功能的关系。在临床样本之外,我们估计了观察到的SDBOLD破坏模式与死后基因表达、元分析认知功能和神经递质受体谱之间的空间相关性。发现了两种SDBOLD中断的转诊断模式。模式1在所有诊断组中都表现出来,在精神分裂症中最为明显,其特征是语言/听觉网络的SDBOLD较高,而默认模式/感觉运动网络的SDBOLD较低。相比之下,模式2仅表现在单极和双相抑郁症中,其特征是默认模式/显著性网络中SDBOLD较高,而感觉运动网络中SDBOLD较低。模式1的表达与MPDs的临床症状和认知缺陷的严重程度相关。这两种被破坏的模式与基因表达(如神经元投射/细胞过程)、元分析认知功能(如语言/记忆)和神经递质受体表达谱(如D2/5-羟色胺/阿片类受体)具有不同的空间相关性。总之,综上所述,神经变异是MPDs潜在的经诊断生物标志物,其大量空间分布可以通过基因表达和神经递质受体谱来解释。MPDs的病理生理学可以通过测量休息时的神经变异来追踪,异常变异的不同空间模式产生不同的临床认知特征。
悦影科技
2023/09/11
4850
nature reviews neurology|精神分裂症:从神经化学到环路、症状和治疗
摘要:精神分裂症是全球致残的主要原因。目前的药物治疗主要使用一种机制-多巴胺D2受体阻断,但结果往往显示出有限的疗效和耐受性差。这些限制突出了需要更好地了解疾病的病因,以帮助发展替代治疗方法。在这里,我们回顾了最新的荟萃分析和其他关于前驱、首发和慢性精神分裂症的神经生物学研究结果,以及它们与精神病症状的联系,重点是来自精神分裂症患者的影像学证据。这一证据表明,与健康个体相比,区域特异性神经递质改变,包括基底神经节谷氨酸和多巴胺含量较高。我们考虑皮质-丘脑-纹状体-中脑回路的功能障碍如何改变大脑信息处理,从而成为精神病症状的基础。最后,我们讨论了这些发现对开发新的、基于机制的治疗方法和精确医学对精神病症状、阴性症状和认知症状的影响。
悦影科技
2024/04/01
9490
Science:人类神经科学中的功能基因组学和系统生物学
由于对资源建设和工具开发的强大的财政和智力支持,神经科学研究已经进入了神经基因组学领域的关键发展阶段。以前的组织异质性的挑战已经遇到了技术的应用,可以让我们研究单个细胞尺度的功能轮廓。此外,以细胞类型特异性的方式干扰基因、基因调控元件和神经元活性的能力已经与基因表达研究相结合,以在系统水平上揭示基因组的功能基础。虽然这些见解必须基于模型系统,但由于人类遗传学、大脑成像和组织收集方面的进步,我们现在有机会将这些方法应用于人类和人体组织中。我们承认,在我们将模型系统中开发的基因组工具应用于人类神经科学的程度上,可能总是有限制的;然而,正如我们在这个角度所描述的,神经科学领域现在已经为解决这一雄心勃勃的挑战奠定了最佳基础。将系统级的网络分析应用于这些数据集,将有助于对人类神经基因组学的更深入的理解,否则,这是无法从直接可观察到的现象中实现的。
悦影科技
2024/01/08
5470
Gut:脑成像技术在脑肠交互疾病中的角色
请点击上面“思影科技”四个字,选择关注作者,思影科技专注于脑影像数据处理,涵盖(fMRI,结构像,DTI,ASL,EEG/ERP,FNIRS,眼动)等,希望专业的内容可以给关注者带来帮助,欢迎留言讨论,也欢迎参加思影科技的其他课程。(文末点击浏览)
用户1279583
2019/12/17
9980
Gut:脑成像技术在脑肠交互疾病中的角色
宏观尺寸上脑网络结构和功能的联系
结构功能关系是许多自然系统的基本原理。然而,网络神经科学研究表明,大脑的结构连接和功能连接之间并不存在完美的联系。在此,我们综述了宏观大脑网络中连接结构和功能的现状的知识,并讨论了用于评估这种关系的不同类型的模型。我们认为目前的模型不包括完全预测功能所必需的生物学细节。结构网络重构因局部分子和细胞元数据而丰富,与更细微的功能和属性表示相协调,为真正理解结构和功能关系的多尺度研究提供了巨大的潜力。
悦影科技
2021/04/29
6480
宏观尺寸上脑网络结构和功能的联系
大脑中复杂适应动力学的神经调节控制
paper: Neuromodulatory control of complex adaptive dynamics in the brain
CreateAMind
2023/09/13
2490
大脑中复杂适应动力学的神经调节控制
推荐阅读
相关推荐
重磅综述:精神分裂症的神经影像生物标志物
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档