Loading [MathJax]/jax/output/CommonHTML/config.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >高斯函数、高斯积分和正态分布

高斯函数、高斯积分和正态分布

作者头像
deephub
发布于 2022-03-12 02:36:26
发布于 2022-03-12 02:36:26
1.7K0
举报
文章被收录于专栏:DeepHub IMBADeepHub IMBA

正态分布是高斯概率分布。高斯概率分布是反映中心极限定理原理的函数,该定理指出当随机样本足够大时,总体样本将趋向于期望值并且远离期望值的值将不太频繁地出现。高斯积分是高斯函数在整条实数线上的定积分。这三个主题,高斯函数、高斯积分和高斯概率分布是这样交织在一起的,所以我认为最好尝试一次性解决这三个主题(但是我错了,这是本篇文章的不同主题)。本篇文章我们首先将研究高斯函数的一般定义是什么,然后将看一下高斯积分,其结果对于确定正态分布的归一化常数是非常必要的。最后我们将使用收集的信息理解,推导出正态分布方程。

首先,让我们了解高斯函数实际上是什么。高斯函数是将指数函数 exp(x) 与凹二次函数(例如 -(ax^2+bx+c) 或 -(ax^2+bx) 或只是-ax^2组成的函数。结果是一系列呈现“钟形曲线”的形状的函数。

两个高斯函数的图。第一个高斯(绿色)的λ=1和a=1。第二个(橙色)λ=2和a=1.5。两个函数都不是标准化的。也就是说,曲线下的面积不等于1。

大多数人都熟悉这类曲线是因为它们在概率和统计中被广泛使用,尤其是作为正态分布随机变量的概率密度函数。在这些情况下,函数具有的系数和参数既可以缩放“钟形”的振幅,改变其标准差(宽度),又可以平移平均值,所有这一切都是在曲线下的面积进行归一化(缩放钟形,使曲线下的面积总是等于1)的同时进行的。结果是一个高斯函数包含了一大堆的参数来影响这些结果。

如果将其认为是均值 = μ 且标准差 = σ 的正态分布方程。将其与高斯 λ exp(-ax^2) 的一般形式进行比较,我们可以看到:

  • (x - μ)^2表示的是均值μ如何在x轴上左右平移图像,这就是均值要做的。如果μ=0,那么图的中心为0。
  • σ^2,是一个测量随机变量的方差,也就是说数据是如何分散的,当我们使用a=1/(2σ^2)缩小或扩大图形时,我们希望同时缩放图形使用λ=1/√2πσ^2。这样图下的面积才能保持为1。

前导系数 λ 有时表示为 1/Z,其中 Z=√2πσ^2,正是这样的一个结果将我们带到了本文的主要观点之一:√2πσ^2有时被称为一个自变量的正态分布的归一化常数,而1/√2πσ2则被称为归一化常数。在这两种情况下,公式中都有 π,它是从哪里来的?它通常与圆、径向对称和/或极坐标相关联。单个变量的函数如何以 π 作为其在前导系数中的归一化参数之一呢?

可以参考我们以前的文章,里面有非常详细的描述

高斯积分

不定积分 ∫ exp(x^2) dx 不可能用初等函数求解。有没有任何积分方法可以用来求解不定积分?

可以计算定积分,如上所述,首先对高斯函数求平方从而在 x 和 y 中产生一个具有径向对称二维图的两个变量函数。这样能够将直角坐标系转换为极坐标,在此基础上就可以使用更熟悉的积分方法(例如置换)进行积分。然后,简单地取结果的平方根(因为我们在开始时对积分进行平方) 就得到了我们的答案,顺便说一句,结果是是√π。

对高斯积分求平方

方法的第一步是对积分求平方——也就是说,我们将一维转换为二维,这样就可以使用多变量微积分的技术来求解积分

可以重写为:

这两个积分用x和y表示是等价的;所以它等同于x的单个积分的平方。因为变量x和y是独立的,所以可以把它们移进或移出第二个积分符号,可以这样写:

如果你不熟悉如何解二重积分也不用担心。只需先使用内部变量进行积分得到单个积分。然后用左边的变量和外面的变量积分。但现在还不需要这么做。这里需要注意的是当我们对积分进行平方时,得到了一个二维的图形化的径向对称的高斯函数。用x和y来表示积分e的指数是- (x^2+y^2)给了我们下一步应该做什么的线索。

转换为极坐标

这里棘手的部分是,我们必须将直角坐标下的二重积分转换成极坐标下的二重积分。

为了在极坐标中对整个无限区域进行积分,我们首先对 exp(−r²) 相对于从 x=0 开始并延伸到无穷大的半径 r 进行积分。结果是一个无限薄的楔形,看起来像我们原始一维高斯曲线的一半。然后我们围绕旋转轴 Z 轴旋转楔形,并累积无限数量的这些极薄的楔形。也就是说——我们在 π 从 0 到 2π 时积分。

我们现在的二重积分看起来像这样:

我们可以用 r^2 替换指数中的 −(x^2+y^2),这要感谢毕达哥拉斯。但是我们仍然需要将我们的微分从矩形转换为极坐标。

微分的转换简单的表示如下:

在任何情况下,我们的二重积分现在看起来像这样:

添加适当的积分边界:

如果我们设u=r^2,那么du=2r,我们可以写成(对于内积分)

然后求出外积分:

所以:

我们在下一节求解标准化常数时,这个结果很重要。

正态分布函数的推导

现在我们有了推导正态分布函数的所有前提。下面将分两步来做:首先确定我们需要的概率密度函数。这意味着以λ为单位重新转换-a-产生的函数,无论为λ选择什么值,曲线下的面积总是1。然后用随机变量的方差σ^2来转换λ。对整个实数线上的方差进行积分 从而得到我们在前导系数 √2πσ^2 中需要归一化常数的项,也是我们在分母中需要的项指数 2σ^2。我们将使用分部积分来求解方差积分。

概率密度函数的推导

我们将从广义高斯函数f(x)=λ exp(−ax^2)开始,正态分布下的面积必须等于1所以我们首先设置广义高斯函数的值,对整个实数线积分等于1

这里将 -a- 替换为 a^2 稍微修改了高斯分布。为什么要这样做?因为它可以使用 换元积分 U-substitution 来解决这个积分。为什么我们可以这样做?因为 -a- 是一个任意常数,所以a^2 也只是一个任意常数,可以使用 U-substitution 求解。让 u=ax 和 du=a dx 这意味着 dx=du/a, 由于 λ 和 1/a 是常数,我们可以将它们移到积分符号之外,得到:

我们从上面关于高斯积分的讨论中知道,右边积分的值等于√π。这样就可以改成:

求解 -a- 可以这样写:

根据已经发现的λ 和 -a- 之间的关系,修改后的高斯下的面积总是等于 1 也是必须的,所以我们可以进一步修改,用 πλ^2 代替 a^2 并写:

无论 λ 的值如何,该曲线下的面积始终为 1。这是我们的概率密度函数。

确定归一化常数

在获得归一化概率分布函数之前还需要做一件事:必须将 λ 重写为随机变量方差 σ^2 的函数。这将涉及对整个实数线的方差表达式进行积分所以需要采用按分部积分来完成此操作。

如果给定一个概率密度函数 f(x) 和一个均值 μ,则方差定义为从均值平方(x - μ)^2的偏差乘以整个实数线的概率密度函数f(x)的积分:

假设μ=0,因为已经有了概率密度函数h(x),所以可以写成

用分部积分法求解这个积分有:

第一项归零是因为指数中的x^2项比前一项分子中的- x项趋近于∞的速度快得多所以我们得到

右边的被积函数是概率密度函数,已经知道当对整个实数线进行积分时它的值是1 :

求解 λ 得到:

将 λ 的 1/√2πσ^2 代入我们的修改后的公式(即我们的概率密度函数),我们得到:

剩下要做的就是将平均值 μ 放入指数的分子中,以便可以根据 μ 的值沿 x 轴平移图形:

这样就完成了方程推导

作者 :Manin Bocss

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2022-01-25,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 DeepHub IMBA 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
原创 | 一文读懂正态分布与贝塔分布
正态分布,是一种非常常见的连续概率分布,其也叫做常态分布(normal distribution),或者根据其前期的研究贡献者之一高斯的名字来称呼,高斯分布(Gaussian distribution)。正态分布是自然科学与行为科学中的定量现象的一个方便模型。
数据派THU
2020/09/30
2.8K0
​常用的连续概率分布汇总
在数学中,连续型随机变量的概率密度函数(在不至于混淆时可以简称为密度函数)是一个描述这个随机变量的输出值,在某个确定的取值点附近的可能性的函数。而随机变量的取值落在某个区域之内的概率则为概率密度函数在这个区域上的积分。
deephub
2021/11/08
1.9K0
​常用的连续概率分布汇总
​常见的8个概率分布公式和可视化
概率和统计知识是数据科学和机器学习的核心;我们需要统计和概率知识来有效地收集、审查、分析数据。
deephub
2022/06/04
8790
​常见的8个概率分布公式和可视化
【机器学习】因微知著,穷数通灵:微积分与机器学习的量化之美
在机器学习的学习旅程中,微积分不仅是理解单变量变化的工具,更是处理多变量和复杂系统的关键。上一篇文章中,我们详细讲解了积分的基本概念与计算方法,并通过实战项目展示了积分在概率与统计中的应用。本篇文章将进一步探讨多重积分与微分方程,这两者在机器学习中的应用广泛且重要。通过理论与实践相结合的方式,你将能够更好地理解和运用这些高级微积分概念。
半截诗
2025/01/09
2620
【机器学习】因微知著,穷数通灵:微积分与机器学习的量化之美
机器学习统计概率分布全面总结(Python)
在平时的科研中,我们经常使用统计概率的相关知识来帮助我们进行城市研究。因此,掌握一定的统计概率相关知识非常有必要。
算法进阶
2023/12/26
6280
机器学习统计概率分布全面总结(Python)
【数学基础篇】--详解人工智能之数学 积分学,概率空间,大数定律和中心极限定理
牛顿-莱布尼茨公式展示了微分与积分的基本关系: 在一定程度上微分与积分互 为逆运算.
LhWorld哥陪你聊算法
2018/09/13
9640
【数学基础篇】--详解人工智能之数学 积分学,概率空间,大数定律和中心极限定理
蒙特卡罗计算积分
通常情况下,我们不能解析地求解积分,必须借助其他方法,其中就包括蒙特卡罗积分。你可能还记得,函数的积分可以解释为函数曲线下的面积。
磐创AI
2020/11/09
8210
蒙特卡罗计算积分
笔记:Gamma 分布的转化
就说 X 是服从参数为 (β,α) 的 Gamma 分布,记为Γ(β,α)。Gamma 分布的两个参数中,第一个β 决定了形状 (shape),第二个参数α 决定了尺度 (scale)。
四火
2022/07/15
2.7K0
笔记:Gamma 分布的转化
Python中概率累计分布函数(CDF)分析
PDF:连续型随机变量的概率密度函数是一个描述这个随机变量的输出值,在某个确定的取值点附近的可能性的函数。
用户8949263
2022/05/25
13K0
Python中概率累计分布函数(CDF)分析
从不定积分到斯托克斯公式
学完高数的人都知道,我的标题其实是写了涵盖了所有的积分学知识。主要是整理内容,串成一条线。初读书很厚,读到现在又很薄。
云深无际
2024/10/29
1640
从不定积分到斯托克斯公式
11种概率分布,你了解几个?
了解常见的概率分布十分必要,它是概率统计的基石。这是昨天推送的 从概率统计到深度学习,四大技术路线图谱,都在这里!文章中的第一大技术路线图谱如下所示,图中左侧正是本文要总结的所有常见概率分布。
double
2019/10/08
20.9K0
11种概率分布,你了解几个?
【机器学习】从流动到恒常,无穷中归一:积分的数学诗意
在机器学习的学习旅程中,微积分不仅仅是理论的支撑,更是实际应用的关键工具。上一篇文章中,我们探讨了极限与连续性以及导数的概念与应用,特别是在梯度下降法中的应用。本篇文章将继续深入,重点讲解积分的概念与计算,以及它在机器学习中的实际应用。
半截诗
2025/01/09
1410
【机器学习】从流动到恒常,无穷中归一:积分的数学诗意
概率论基础 - 11 - 高斯分布 / 正态分布
本文记录高斯分布。 高斯分布 / 正态分布 正态分布是很多应用中的合理选择。如果某个随机变量取值范围是实数,且对它的概率分布一无所知,通常会假设它服从正态分布。有两个原因支持这一选择: 建模的任务的真实分布通常都确实接近正态分布。 中心极限定理表明,多个独立随机变量的和近似正态分布。 在具有相同方差的所有可能的概率分布中,正态分布的熵最大(即不确定性最大)。 一维正态分布 正态分布的概率密度函数为: p(x)=\frac{1}{\sqrt{2 \pi} \sigma} e{-(x-\mu){2}
为为为什么
2022/08/05
1.6K0
概率论基础 - 11 - 高斯分布 / 正态分布
单变量和多变量高斯分布:可视化理解
高斯分布是统计中最重要的概率分布,在机器学习中也很重要。因为很多自然现象,比如人口的身高,血压,鞋子的尺码,教育指标,考试成绩,还有很多更重要的自然因素都遵循高斯分布。
deephub
2020/10/19
1.3K0
单变量和多变量高斯分布:可视化理解
机器学习储备(13):概率密度和高斯分布例子解析
《实例》阐述算法,通俗易懂,助您对算法的理解达到一个新高度。包含但不限于:经典算法,机器学习,深度学习,LeetCode 题解,Kaggle 实战。期待您的到来! 01 — 回顾 前面介绍到关于概率论中离散型随机变量,和一个离散型相关的经典分布:二分分布,大家想了解的可以参考: 机器学习储备(11):说说离散型随机变量 机器学习储备(12):二项分布的例子解析 理解这些基本的概念和理论,对于我们掌握机器学习的许多算法都是非常有帮助的,比如在分类或聚类时,如果能得出某个样本点属于某个类别的概率,那么无疑是非常
double
2018/04/02
1.3K0
机器学习储备(13):概率密度和高斯分布例子解析
理解概率密度函数
概率密度函数是概率论中的核心概念之一,用于描述连续型随机变量所服从的概率分布。在机器学习中,我们经常对样本向量x的概率分布进行建模,往往是连续型随机变量。很多同学对于概率论中学习的这一抽象概念是模糊的。在今天的文章中,SIGAI将直观的解释概率密度函数的概念,帮你更深刻的理解它。
SIGAI学习与实践平台
2018/10/31
1.5K0
理解概率密度函数
Python实现 8 个概率分布公式及可视化
概率和统计知识是数据科学和机器学习的核心; 我们需要统计和概率知识来有效地收集、审查、分析数据。
数据STUDIO
2022/05/24
1.3K0
Python实现 8 个概率分布公式及可视化
可视化数据科学中的概率分布以帮你更好地理解各种分布
在某些分布假设下,某些机器学习模型被设计为最佳工作。因此,了解我们正在使用哪个发行版可以帮助我们确定最适合使用哪些模型。
计算机与AI
2020/11/19
1K0
可视化数据科学中的概率分布以帮你更好地理解各种分布
深度学习500问——Chapter01:数学基础
深度学习通常又需要哪些数学基础?深度学习里的数学到底难在哪里?通常初学者都会有这些问题,在网络推荐及书本的推荐里,经常看到会列出一系列数学科目,比如微积分、线性代数、概率论、复变函数、数值计算、优化理论、信息论等等。这些数学知识有相关性,但实际上按照这样的知识范围来学习,学习成本会很久,而且会很枯燥。本章我们通过选举一些数学基础里容易混肴的一些概念作以介绍,帮助大家更好的理清这些易混肴概念之间的关系。
JOYCE_Leo16
2024/03/19
3430
深度学习500问——Chapter01:数学基础
理解概率密度函数
概率密度函数是概率论中的核心概念之一,用于描述连续型随机变量所服从的概率分布。在机器学习中,我们经常对样本向量x的概率分布进行建模,往往是连续型随机变量。很多同学对于概率论中学习的这一抽象概念是模糊的。在今天的文章中,SIGAI将直观的解释概率密度函数的概念,帮你更深刻的理解它。
SIGAI学习与实践平台
2018/12/06
1.1K0
推荐阅读
相关推荐
原创 | 一文读懂正态分布与贝塔分布
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档