Loading [MathJax]/jax/output/CommonHTML/config.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
社区首页 >专栏 >快手3面:说说傅里叶变换、拉普拉斯变换为什么要变换,它们之间的联系是什么!

快手3面:说说傅里叶变换、拉普拉斯变换为什么要变换,它们之间的联系是什么!

原创
作者头像
Java程序猿
修改于 2021-06-07 09:53:28
修改于 2021-06-07 09:53:28
7690
举报
文章被收录于专栏:Java核心技术Java核心技术

什么是数学变换?

要理解这些变换,首先需要理解什么是数学变换!如果不理解什么是数学变换的概念,那么其他的概念我觉得也没有理解。

数学变换是指数学函数从原向量空间在自身函数空间变换,或映射到另一个函数空间,或对于集合X到其自身(比如线性变换)或从X到另一个集合Y的可逆变换函数。比如(图片来源wikipedia):

Java技术中通常也要用到一些算法,小编这里分享一份面试真题,理解玩理论后可以练练手!

旋转变换(Rotation)

镜像变换(Reflection)

平移变换(Translation)

数学中还有很多其他的数学变换,其本质都可以看成是将函数f(x)利用变换因子进行的一种数学映射,其变换结果是函数的自变量有可能还是原来的几何向量空间,或许会变成其他的几何向量空间,比如傅立叶变换就从时域变换为频域。

而傅立叶变换和拉普拉斯变换的本质都是对连续或有限个第一类间断点函数的一种积分变换,那么什么是积分变换呢?

什么是积分变换?

积分变换通过对原函数对映射函数空间自变量在特定区间进行积分运算,将函数从其原始函数空间映射到另一个函数空间。这样一来,其中原始函数的某些属性在映射函数空间可能比原始函数空间更容易表征或分析。通常可以使用逆变换将变换后的函数映射回到原函数空间,这样的变换称为可逆变换。

假定对于函数为自变量t的函数f(t),通常积分变换都具有如下类似的范式:

函数f(t)是该变换的输入,(Tf)(u)为变换的输出,因此积分变换一般也称为一种特定的数学运算符。而函数K(t,u)称为积分核函数(kernel function)。

这里有一个对称核函数的概念,这是什么意思呢?就是将函数K的两个自变量交换位置仍然相等:

有的变换可逆,这是什么概念呢?就是变换后通过逆变换,还能还原!

观察正变换与逆变换,你会发现:

  • 核函数刚好两个自变量交换位置
  • 正变换是对原函数f(t)在时间维度上进行积分
  • 逆变换是在变换后的函数在u维度上进行积分

什么是傅立叶级数?

在谈傅立叶变换之前,先谈谈傅立叶级数会更容易理解傅立叶变换。在数学中,傅里叶级数(Fourier series)是把类似波的函数表示成简单正弦波的方式。更正式的说法是,它能将任何周期性函数或周期性信号分解成一个(可能由无穷个频率分量组成的)简单振荡函数的集合,即正弦函数和余弦函数(或者,等价地使用复指数),从数学的定义来看:

公式中的k表示第k次谐波,这是个什么概念呢?不容易理解,看下对于一个方波的前4次谐波合成动图就比较好理解了。这里合成的概念是指时域上的叠加的概念,图片来源wikipedia

从上图可以直观看出,周期性方波,可以看成多次谐波的线性叠加,其幅度谱图,是一根根离散的谱线,且幅度值越来越低,从这个角度可以看出高次谐波的分量,占比越来越小。其谱线的位置为:

应用:这里可以联想到我们的电子系统中的时钟信号,做硬件的朋友或有经验,在做EMC的辐射测试时,发现产品电路板在某些频点超标,有经验的同学会很快定位到辐射源。其实这里大概率就是因为周期性的时钟信号造成的,从频率的角度可以看成是其基频的多次谐波的线性叠加,而某个谐波分量在电路线路尺寸满足辐射条件时,就从电路板上脱逸而出,变为电磁波能量向空间传播。所以反向去查该频率可能对应的周期性时钟信号的基频就能很快定位到辐射源,从而解决问题。

说到傅立叶级数是周期性信号可以用傅立叶级数展开,那么是不是任一周期性信号都可以进行傅立叶级数展开呢?答案是否定的,必须满足著名的狄利克雷(Dirichlet)条件

  • 在一周期内,如果有间断点存在,则间断点的数目需要是有限个数
  • 在一周期内,极大值和极小值的数目是有限个数的
  • 在一周期内,信号或者函数是绝对可积分的。见前文公式。

什么是傅立叶变换?

前面说了傅立叶级数,接下来再看傅立叶变换。傅立叶变换之所以称为傅立叶变换,是由于1822年,法国数学家傅立叶(J.Fourier) 在研究热传导理论时首次证明了将周期函数展开为傅立叶级数的理论,并进而不断发展成为一个有力的科研分析工具。

假定周期性信号周期T逐渐变大,则谱线间间隔将逐渐变小,如果外推周期T无限放大,变成无穷大,则信号或者函数就变成非周期信号或函数了,此时谱线就变成连续的了,而非一根一根离散的谱线!那么傅立叶变换正是这种一般性的数学定义:

其核函数的两个自变量为t, ,对于一般称为角速度(可以形象地理解为旋转运动的快慢),是表征频率空间的。

上面这两个公式是啥意思呢?在度量空间可积可以理解成其在度量空间能量有限,也即对其自变量积分(相当于求面积)是一个确定值,那么这样的函数或者信号就可以进行傅立叶变换展开,展开得到的就变成是频域的函数了,如果对频率将函数值绘制出曲线就是我们所说的频谱图,而其逆变换就比较好理解了,如果我们知道一个信号或者函数谱密度函数,就可以对应还原出其时域的函数,也能绘制出时域的波形图。

傅立叶变换公式,从理解的角度,可以看成无限多无穷小的能量之和,而傅立叶级数也是各谐波分量的加和,所不同的是,前者相对于频率变量是连续的,而后者相对于频率则是离散的!

当然,本文限定讨论时域信号是因为我们电子系统中的应用最为普遍的就是一个时域信号。推而广之,其他的多维度信号也能利用上面定义进行推广,同样在多维空间信号也非常有应用价值,比如2维图像处理、3维图像重建等等。

傅立叶级数与变换的区别?

  • 傅立叶级数对应的是周期信号,而傅立叶变换则对应的是一个时间连续可积信号(不一定是周期信号)
  • 傅立叶级数要求信号在一个周期内能量有限,而后者则要求在整个区间能量有限
  • 傅立叶级数的对应是离散的,而傅立叶变换则对应是连续的。

故而,两者的物理含义不同,且其量纲也是不同的,代表周期信号的第k次谐波幅度的大小,而则是频谱密度的概念。所以答案是这两者从本质上不是一个概念,傅立叶级数是周期信号的另一种时域的表达方式,也就是正交级数,它是不同的频率的波形的时域叠加。而傅立叶变换则是完全的频域分析,傅里叶级数适用于对周期性现象做数学上的分析,傅里叶变换可以看作傅里叶级数的极限形式,也可以看作是对周期现象进行数学上的分析,同时也适用于非周期性现象的分析。

什么是拉普拉斯变换?

傅立叶拉氏变换联系区别

所以傅立叶变换与拉普拉斯变换的联系就比较容易联系了。

  • 拉普拉斯变换,将原函数从时间维度(不一定是时间维度,只是方便理解本文以常见的时间维度信号进行描述),映射为复平面
  • 傅立叶变换是拉普拉斯变换的特例,也即变换核函数时,拉普拉斯变换就变成傅立叶变换了。相当于只取虚部,实部为0.
  • 傅立叶变换是从原维度变换为频率维度,对于信号处理而言相当于将时域信号变换为频域进行分析,为信号处理提供了强大的数学理论基础及工具。
  • 拉普拉斯变换,将原维度变换为复频域,在电子电路分析以及控制理论中,为建立系统的数学描述提供了强大的数学理论基础,学过控制理论的一天到晚都与传递函数打交道,其本质就是拉普拉斯变换对系统的一种数学建模描述。为分析系统的稳定性、可控性提供了数学工具。

什么是Z变换?

Z变换本质上是拉普拉斯变换的离散形式。也称为Fisher-Z变换。对于连续信号进行抽样变换就得到了原函数的离散序列:

那么Z变换的意义在于什么呢?在数字信号处理以及数字控制系统中,Z变换提供了数学基础。利用Z变换很快就能将一个传递函数描述成差分方程形式,这就为编程实现提供了数学依据,比如一个数字滤波器知道其Z变换形式,写代码就是分分钟的事情了,同样知道一个控制算法的Z变换形式,同样编代码也是水到渠成的事情。

这里谈到Z变换的离散形式,那么这里也提一句,傅立叶变换数字落地,也即离散形式是离散傅立叶变换DFT(Discrete Fourier Transform),而大家所熟知的快速傅立叶变换FFT(Fast Fourier Transform)则是DFT的高效率实现。

总结一下

要理解三种变换的联系区别,首先要理解什么是数学变换,什么是积分变换。傅立叶变换以及拉普拉斯变换本质上都是连续或有限个第一类间断点函数的积分变换,而傅立叶变换是拉普拉斯变换的特殊形式,而Z变换是拉普拉斯变换的离散形式。每种变换都有其应用价值,傅立叶变换在信号处理的频域分析中提供了强大的数学工具,而拉普拉斯变换在电子学、控制工程、航空航天等领域提供了建模、分析的数学分析工具;Z变换则将这些变换进而落地为数字实现提供数学理论依据。DFT为FFT的离散化形式,而FFT是DFT的算法优化实现。

原文链接:https://mp.weixin.qq.com/s/tImx54Qjvjjn4iVnE09w0g

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
吴大正信号与系统-频域分析总结
吴大正的书现在来看是真不错,奥本海姆让我迷失在了知识的海洋。反而现在看这种国内教科书的感觉非常好。
云深无际
2024/10/11
2170
吴大正信号与系统-频域分析总结
神经网络与傅立叶变换有何关系?
机器学习和深度学习中的模型都是遵循数学函数的方式创建的。从数据分析到预测建模,一般情况下都会有数学原理的支撑,比如:欧几里得距离用于检测聚类中的聚类。
算法进阶
2023/08/28
3690
神经网络与傅立叶变换有何关系?
【GCN】万字长文带你入门 GCN
断断续续写了一个多星期,期间找了很多同学讨论学习,感谢指导过点拨过我的同学们,为了精益求精本着不糊弄别人也不糊弄自己的原则在本文中探讨了很多细节。
阿泽 Crz
2020/07/21
5.1K0
【GCN】万字长文带你入门 GCN
理解图的拉普拉斯矩阵
谱图理论是图论与线性代数相结合的产物,它通过分析图的某些矩阵的特征值与特征向量而研究图的性质。拉普拉斯矩阵是谱图理论中的核心与基本概念,在机器学习与深度学习中有重要的应用。包括但不仅限于:流形学习数据降维算法中的拉普拉斯特征映射、局部保持投影,无监督学习中的谱聚类算法,半监督学习中基于图的算法,以及目前炙手可热的图神经网络等。还有在图像处理、计算机图形学以及其他工程领域应用广泛的图切割问题。理解拉普拉斯矩阵的定义与性质是掌握这些算法的基础。在今天的文章中,我们将系统地介绍拉普拉斯矩阵的来龙去脉。
SIGAI学习与实践平台
2021/04/09
4.6K0
理解图的拉普拉斯矩阵
什么是傅里叶变换?傅里叶变换处理图像的原理是什么?
傅里叶变换,最牛的算法之一,广泛应用于物理学、信号处理、概率、统计、密码学、声学、光学等领域。
微帧Visionular
2024/11/08
4160
什么是傅里叶变换?傅里叶变换处理图像的原理是什么?
为什么拉普拉斯变换里面的衰减因子是e^st?
然后再来读这篇,本来文章就回答一个问题,但是后面就又变成了拉普拉斯变换的学习笔记,不影响哈,早晚都得学。
云深无际
2024/11/11
2370
为什么拉普拉斯变换里面的衰减因子是e^st?
《信号与系统》很难?也许你应该看看这篇文章
小枣君:大家都知道《信号与系统》是一门很难的课。今天给大家推荐一篇文章,看了之后,也许就会找到打开这门课的正确方式。
鲜枣课堂
2019/07/22
2.1K0
GNN系列 GCN简述 推导理解 及 DGL 源码解析
深度学习一直都是被几大经典模型给统治着,如CNN、RNN等等,它们无论再CV还是NLP领域都取得了优异的效果,那这个GCN是怎么跑出来的?是因为我们发现了很多CNN、RNN无法解决或者效果不好的问题——图结构的数据。
大鹅
2022/07/17
3.6K0
OpenCV系列之傅里叶变换 | 三十
傅立叶变换用于分析各种滤波器的频率特性。对于图像,使用2D离散傅里叶变换(DFT)查找频域。一种称为快速傅立叶变换(FFT)的快速算法用于DFT的计算。关于这些的详细信息可以在任何图像处理或信号处理教科书中找到。请参阅其他资源部分。
磐创AI
2019/12/23
1.5K0
OpenCV系列之傅里叶变换 | 三十
数字信号处理实验报告MATLAB(matlab数字信号处理pdf)
信号是数字信号处理领域中最基本、最重要的概念。而数字信号变换技术,又是对信号进行处理操作的最基本的有效途径之一。因此,数字信号变换技术,便成为数字信号处理领域中专业人员所必须要张我的一项最基本的技能。
全栈程序员站长
2022/08/01
8910
傅里叶变换公式整理,意义和定义,概念及推导
看到论坛有一个朋友提问为什么傅里叶变换可以将时域变为频域? 这个问题真是问到了灵魂深处。
全栈程序员站长
2022/09/13
5.1K0
傅里叶变换公式整理,意义和定义,概念及推导
傅里叶反变换和拉普拉斯反变换中1/2π系数的由来
在信号系统里面有着俩大变换,都是往时域变的,在学习的过程中我想解决一个疑问,就是为什么里面出现了看起来格格不入的1/2π系数。
云深无际
2024/11/21
2690
傅里叶反变换和拉普拉斯反变换中1/2π系数的由来
全面解析傅立叶变换(非常详细)
第一部分、 DFT 第一章、傅立叶变换的由来 第二章、实数形式离散傅立叶变换(Real DFT)
全栈程序员站长
2022/11/01
6K0
EEG/ERP研究中使用头皮表面拉普拉斯算法的问题和考虑
尽管表面拉普拉斯算法可能抵消的容积传导和对表面电位数据记录参考的不利影响,电生理学学科一直不愿采用这种方法进行数据分析。这种顾虑的原因是多方面的,往往涉及到对潜在转换性质的不熟悉、感知到的数学复杂性的威胁,以及对信号损失、密集电极排列需求或噪声敏感性的担忧。我们回顾了容积传导和允许任意选择脑电参考所引起的缺陷,以一种直观的方式描述了表面拉普拉斯变换的基本原理,并举例说明了常见参考模式(鼻子、连接乳突、平均)和用于频繁测量的EEG频谱(theta, alpha)以及标准ERP成分(如N1或P3)的表面拉普拉斯转换之间的差异。我们特别回顾了表面拉普拉斯算法普遍应用中的一些常见的局限,这些局限可以通过适当选择样条弹性参数和正则化常数进行球面样条内插来有效地解决。我们从实用主义的角度认为,这些局限不仅是没有根据的,而且一直使用表面电位对脑电图和ERP研究的进展构成了相当大的障碍。本文发表在International Journal of Psychophysiology杂志。
用户1279583
2022/02/28
1K0
EEG/ERP研究中使用头皮表面拉普拉斯算法的问题和考虑
两类重要的积分变换
本文所述内容属于《积分变换》这门学科的核心内容,所谓“积分变换”其实本质上是一个函数通过含参变量的积分变换成另一个关于参变量的函数的过程,如:
用户7506105
2021/11/10
2.2K1
傅里叶变换有什么用?
我在上两篇文章「手把手教你编写傅里叶动画」、「傅里叶动画专辑欣赏」中介绍了傅里叶级数的本质以及编写了一些有趣的傅里叶动画,主要讲述了周期性函数究竟是如何一步步被分解成正余弦函数的和的。但是,不幸的是我们在工程中使用的一些函数往往会有一些非周期性函数,那么我们该如何用三角函数来描述它们呢,这就是今天我要讲述的傅里叶变换。
程序员小浩
2020/09/22
4.6K0
傅里叶变换有什么用?
【图神经网络】数学基础篇
能够将数据转换到欧几里德空间的便是欧几里德结构化数据,如时间序列数据,图像数据,上图则是图像数据的一个例子
阿泽 Crz
2021/03/10
1.6K0
【图神经网络】数学基础篇
【STM32H7的DSP教程】第24章 DSP变换运算-傅里叶变换
完整版教程下载地址:http://www.armbbs.cn/forum.php?mod=viewthread&tid=94547 第24章       DSP变换运算-傅里叶变换 本章节开始进入此教
Simon223
2020/05/22
8280
时序顶会基础创新知识点-傅立叶变换篇
很长一段时间以来,我在读论文的时候经常看到时序研究中,会运用傅立叶变换做初步的处理,然后基于处理结果,进行后续的建模研究。又因为“傅立叶变换”这个名字太熟悉了,但是对于它的推理过程、应用步骤,每次似乎都没有彻底吃透,于是占据时间序列分析建模重要地位的傅立叶变换,似乎既熟悉又陌生。
科学最Top
2024/11/07
2270
时序顶会基础创新知识点-傅立叶变换篇
音频知识(一)
音调主要和声波的频率有关。但是音调和频率并不是成正比的关系,它还与声音的强度 及波形有关。
languageX
2021/04/10
3.2K0
音频知识(一)
相关推荐
吴大正信号与系统-频域分析总结
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档