前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >多尺度深度特征(上):多尺度特征学习才是目标检测精髓(干货满满,建议收藏)

多尺度深度特征(上):多尺度特征学习才是目标检测精髓(干货满满,建议收藏)

作者头像
计算机视觉研究院
发布于 2022-01-26 06:17:45
发布于 2022-01-26 06:17:45
2.4K0
举报

作者:Edison_G

深度特征学习方案将重点从具有细节的具体特征转移到具有语义信息的抽象特征。它通过构建多尺度深度特征学习网络 (MDFN) 不仅考虑单个对象和局部上下文,还考虑它们之间的关系。

1

前言

目前深度学习用于目标检测已经习以为常。从SSD到Yolo系列,其中:

  • 深层网络的感受野比较大,语义信息表征能力强,但是特征图的分辨率低,几何信息的表征能力弱(空间几何特征细节缺乏);
  • 低层网络的感受野比较小,几何细节信息表征能力强,虽然分辨率高,但是语义信息表征能力弱。

高层的语义信息能够帮助我们准确的检测出目标。

SSD框架

ASPP网络

Cascaded

下采样倍数小(一般是浅层)的特征感受野小,适合处理小目标,小尺度特征图(深层)分辨率信息不足不适合小目标。在yolov3中对多尺度检测的理解是,1/32大小的特征图(深层)下采样倍数高,所以具有大的感受野,适合检测大目标的物体,1/8的特征图(较浅层)具有较小的感受野,所以适合检测小目标。FPN中的处理在下面。对于小目标,小尺度feature map无法提供必要的分辨率信息,所以还需结合大尺度的feature map。还有个原因是在深层图做下采样损失过多信息,小目标信息或许已经被忽略。

2

背 景

Feature Extraction

作为许多视觉和多媒体处理任务的基础步骤,特征提取和表示得到了广泛的研究,特别是在网络结构层面,这在深度学习领域引起了很多关注。更深或更广的网络放大了体系结构之间的差异,并在许多计算机视觉应用中充分发挥了提高特征提取能力的作用。skip-connection技术通过在网络的不同层级之间传播信息,缩短它们的连接,在一定程度上解决了梯度消失的问题,这激发了构建更深网络的热点研究,并获得了性能的提升。从5层的LeNet5到16层的VGGNet,再到1000层以上的ResNet,网络的深度急剧增加。ResNet-101显示了其在特征提取和表示方面的优势,尤其是在用作对象检测任务的基础网络时。许多研究人员试图用ResNet-101替换基础网络。

SSD在PASCAL VOC2007上使用Residual-101取得了更好的性能。RRC采用ResNet作为其预训练的基础网络,并通过提出的循环滚动卷积架构产生了具有竞争力的检测精度。然而,SSD通过将VGG-16替换为Residual-101,对于mAP仅获得1%的提升,而其检测速度从19 FPS下降到6.6 FPS,几乎下降了3倍。VGG网络在ImageNet Large Scale Visual Recognition Challenge(ILSVRC) 2014中获得第二名。它浅薄,只有16层,是另一个广泛使用的基础网络。它的优势在于提供了精度和运行速度之间的权衡。SSD通过将VGG-16作为特征提取器与端到端网络结构中提出的多目标检测器相结合,实现了最佳的总体性能。

如上图所示,深度特征图上的多尺度感受野将激活对象的语义和上下文信息。红色、黄色、蓝色和绿色分量代表四种尺寸的过滤器,分别对应不同的对象表达。例如,红色的往往只对中间的红色车辆敏感,而黄色和蓝色的也可能覆盖周围的小型汽车,这是由于不同目标汽车之间相关性的语义表达。绿色的激活范围最大,它不仅可以检测所有车辆,还可以通过利用对象与其背景之间关系的语义描述来检测道路。这个提取各种语义信息的过程可以在深层实现,其中感受野能够覆盖更大的场景和深层产生的特征图,已经拥有语义表达的抽象能力。

我们发现大多数可用的经典网络都是强大的足够的特征提取,并能够提供必要的细节特征。受这些观察的启发,研究者采用迁移学习模型,并在靠近网络顶部的深层设计了一个高效的多尺度特征提取单元。提取的深层特征信息直接馈送到预测层。

研究者提出了四个inception模块,并在四个连续的深层中incept它们,用于提取上下文信息。这些模块显著扩展了各种特征表达的能力,由此实现了基于深度特征学习的多尺度目标检测器。

Attention to Deep Features

基于随机深度的ResNet通过随机dropping 层来改进深度CNN的训练,这凸显了传播过程中存在大量冗余。 有研究者实验证明,ResNet-101中的大多数梯度仅来自10到34层的深度。另一方面,基于小物体检测依赖于较早层产生的细节信息的论点,许多方法从不同的浅层中提取多尺度信息。虽然实验表明语义特征和目标的上下文也有助于小目标检测以及遮挡检测。DSSD采用反卷积层和skip connections来注入额外的上下文,从而在学习候选区域和池化特征之前增加特征图分辨率。Mask R-CNN添加了从目标的更精细空间布局中提取的掩码输出。它由深度卷积产生的小特征图提供的像素到像素对应关系解决。

3

新框架

假设:

  • 这些特征图应该能够提供更加精确的细节特征,尤其是对于刚开始的浅层较;
  • 转换特征图的功能应扩展到足够深的层,以便可以将目标的高级抽象语义信息构建到特征图中;
  • 特征图应包含适当的上下文信息,以便可以准确推断出被遮挡的目标,小目标,模糊或重叠的目标并对其进行稳健的定位。

因此,浅层和深层的特征对于目标识别和定位起着必不可少的作用。为了有效地利用检测到的特征信息,应考虑另一约束条件,以防止特征被改变或覆盖。

今天内容暂时到这里,下一期我们将带领大家一起对新框架详细分析!

下面我通过一小段视频展示下多尺度深度特征学习的效果,主要基于单分支的YoloV3-Tiny网络,效果如下:

小型的篮球被检测到

科比投出的篮球被检测到

观众席的观众的领带被检测到

简单训练后,不同尺寸都是可以检测到,部分错检是因为没有该类型数据,被错检为相似目标

© THE END

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2021-10-03,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 计算机视觉战队 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
CVPR2020 | 显著性目标检测,多尺度信息相互融合
论文地址:https://arxiv.org/pdf/2007.09062.pdf
AI算法修炼营
2020/07/22
3.6K0
CVPR2020 | 显著性目标检测,多尺度信息相互融合
目标检测 | 解决小目标检测!多尺度方法汇总
最开始在深度学习方法流行之前,对于不同尺度的目标,大家普遍使用将原图构建出不同分辨率的图像金字塔,再对每层金字塔用固定输入分辨率的分类器在该层滑动来检测目标,以求在金字塔底部检测出小目标;或者只用一个原图,在原图上,用不同分辨率的分类器来检测目标,以求在比较小的窗口分类器中检测到小目标。经典的基于简单矩形特征(Haar)+级联Adaboost与Hog特征+SVM的DPM目标识别框架,均使用图像金字塔的方式处理多尺度目标,早期的CNN目标识别框架同样采用该方式,但对图像金字塔中的每一层分别进行CNN提取特征,耗时与内存消耗均无法满足需求。但该方式毫无疑问仍然是最优的。值得一提的是,其实目前大多数深度学习算法提交结果进行排名的时候,大多使用多尺度测试。同时类似于SNIP使用多尺度训练,均是图像金字塔的多尺度处理。
AI算法修炼营
2020/05/15
2.2K0
目标检测 | 解决小目标检测!多尺度方法汇总
多尺度深度特征(下):多尺度特征学习才是目标检测精髓
如果想详细知道上集我们具体说了多尺度特征的重要性及其发展,请点击下方链接,查阅相关内容:
计算机视觉研究院
2022/01/26
5870
多尺度深度特征(下):多尺度特征学习才是目标检测精髓
多尺度深度特征(下):多尺度特征学习才是目标检测精髓(论文免费下载)
计算机视觉研究院专栏 作者:Edison_G 深度特征学习方案将重点从具有细节的具体特征转移到具有语义信息的抽象特征。它通过构建多尺度深度特征学习网络 (MDFN) 不仅考虑单个对象和局部上下文,还考虑它们之间的关系。 公众号ID|ComputerVisionGzq 学习群|扫码在主页获取加入方式 论文获取|回复”MDFN“获取论文 1 前景回顾 如果想详细知道上集我们具体说了多尺度特征的重要性及其发展,请点击下方链接,查阅相关内容: 多尺度深度特征(上):多尺度特征学习才是目标检测精髓(干货满满
计算机视觉研究院
2022/04/18
8700
多尺度深度特征(下):多尺度特征学习才是目标检测精髓(论文免费下载)
目标检测(object detection)系列(十) FPN:用特征金字塔引入多尺度
SSD算法证明了多层分支对于目标检测的有效性,在此之前two-stage的目标检测方法已经优化改进过很多代,但是一直没有加入多尺度的方法。终于在FPN中,two-stage引入了多尺度,并且在SSD多层分支方法的基础上进一步改进,提出了特征金字塔网络。FPN的论文是《Feature Pyramid Networks for Object Detection》。
chaibubble
2019/08/29
2K0
目标检测(object detection)系列(十) FPN:用特征金字塔引入多尺度
深度学习500问——Chapter08:目标检测(2)
ResNet-101 + R-FCN:83.6% in PASCAL VOC 2007 test datasets
JOYCE_Leo16
2024/04/25
1200
深度学习500问——Chapter08:目标检测(2)
手把手教你用深度学习做物体检测(七):YOLOv3介绍
yolo3会利用第82、94、106层的特征图来进行不同尺寸的目标检测。 82层的图像小(分辨率低),感受野大,可以到检测图像中较大的目标; 94层的图像中等,感受野中等,可以检测到图像中不大也不小的目标; 106层的图像大(分辨率高),但感受野相对最小,可以检测到图像中较小的目标。 所以如果训练过程中,发现某层的输出值是非数,这只是说明在这层没有检测到目标对象,只要三层中至少有一层能输出正常的数字,就是正常的。 从图上也可以看到,为了能同时学到浅层和深层的特征,上面的82、94层特征图自身经过上采样后还会和早期层的特征图做一些拼接(concat)操作。用论文原话说就是:这样的方法让我们从上采样特征中得到更多有意义的语义信息;从更早期的特征中得到纹理信息(finer-grained information)。
程序员一一涤生
2019/09/10
1.1K0
手把手教你用深度学习做物体检测(七):YOLOv3介绍
中星微夺冠国际人工智能算法竞赛,目标检测一步法精度速度双赢
---- 新智元推荐 来源:Pascal2 【新智元导读】日前,中星微把实际安防项目经验应用到PASCAL VOC数据集,并成功在一步法(one-stage)算法中取得了第一名的好成绩。中星微人工智能芯片技术公司董事长兼总经理张韵东表示:“中星微首次将安防监控应用经验与国际算法竞赛数据集相结合,使得嵌入式前端设备也能达到与云端智能相媲美的效果,取得了可喜可贺的成绩,但这只是一个的开始,相信未来会带来更多更精彩的内容。” 目标检测是机器视觉中一个最重要和最早研究领域之一,也是一切机器视觉任务基础,因此
新智元
2018/05/29
6680
哇~这么Deep且又轻量的Network,实时目标检测
最近挺对不住关注“计算机视觉战队”平台的小伙伴,有段时间没有给大家分享比较硬比较充实的“干货”了,在此向大家表示抱歉,今天抽空之余,想和大家说说目标的实时检测。
计算机视觉研究院
2018/08/17
4170
哇~这么Deep且又轻量的Network,实时目标检测
无需预训练分类器,清华和旷视提出专用于目标检测的骨干网络DetNet
选自arXiv 作者:Zeming Li、Chao Peng、Gang Yu、Xiangyu Zhang、Yangdong Deng、Jian Sun 机器之心编译 参与:路雪、刘晓坤 基于当前用预训练分类器开发目标检测器的方法的固有缺陷,来自清华大学和旷视的研究者提出了专用于目标检测的骨干网络 DetNet。DetNet 可在保持高分辨率特征图和大感受野的同时,高效地执行目标检测任务,并可以自然地扩展到实例分割任务上。在 MSCOCO 数据集的目标检测和实例分割任务上,DetNet 都取得了当前最佳的结果
机器之心
2018/05/08
1.3K0
无需预训练分类器,清华和旷视提出专用于目标检测的骨干网络DetNet
目标检测入门(四):特征复用、实时性
文章结构 本文的第一部分关注检测模型的头部部分。对与每张图片,深度网络其实是通过级联的映射获得了在某一流形上的一个表征,这个表征相比原图片更有计算机视角下的语义性。例如,使用Softmax作为损失函数的分类网络,最后一层获得的张量常常展现出成簇的分布。深度网络因分布式表示带来的指数级增益,拥有远超其他机器学习模型的表示能力,近年来,有不少致力于对深度网络习得特征进行可视化的工作,为研究者提供了部分有直观意义的感知,如浅层学习线条纹理,深层学习物体轮廓。然而,现阶段的深度模型仍然是一个灰盒,缺乏有效的概念去描
朱晓霞
2018/04/18
1.5K0
目标检测入门(四):特征复用、实时性
干货 | 基于深度学习的目标检测算法综述(一)
目标检测(Object Detection)是计算机视觉领域的基本任务之一,学术界已有将近二十年的研究历史。近些年随着深度学习技术的火热发展,目标检测算法也从基于手工特征的传统算法转向了基于深度神经网络的检测技术。从最初 2013 年提出的 R-CNN、OverFeat,到后面的 Fast/Faster R-CNN、SSD、YOLO 系列,再到 2018 年最近的 Pelee。短短不到五年时间,基于深度学习的目标检测技术,在网络结构上,从 two stage 到 one stage,从 bottom-up only 到 Top-Down,从 single scale network 到 feature pyramid network,从面向 PC 端到面向手机端,都涌现出许多好的算法技术,这些算法在开放目标检测数据集上的检测效果和性能都很出色。
AI科技评论
2018/08/21
8350
干货 | 基于深度学习的目标检测算法综述(一)
目标检测ssd算法实践教程_目标检测算法有哪些
基于“Proposal + Classification”的目标检测方法中,R-CNN 系列(R-CNN、 SPPnet、
全栈程序员站长
2022/11/07
7280
目标检测ssd算法实践教程_目标检测算法有哪些
干货 | 基于深度学习的目标检测算法综述(三)
目标检测(Object Detection)是计算机视觉领域的基本任务之一,学术界已有将近二十年的研究历史。近些年随着深度学习技术的火热发展,目标检测算法也从基于手工特征的传统算法转向了基于深度神经网络的检测技术。从最初 2013 年提出的 R-CNN、OverFeat,到后面的 Fast/Faster R-CNN、SSD、YOLO 系列,再到 2018 年最近的 Pelee。短短不到五年时间,基于深度学习的目标检测技术,在网络结构上,从 two stage 到 one stage,从 bottom-up only 到 Top-Down,从 single scale network 到 feature pyramid network,从面向 PC 端到面向手机端,都涌现出许多好的算法技术,这些算法在开放目标检测数据集上的检测效果和性能都很出色。
磐创AI
2018/09/20
2.3K0
干货 | 基于深度学习的目标检测算法综述(三)
干货 | 深度学习时代的目标检测算法
AI 科技评论按:本文作者 Ronald,首发于作者的知乎专栏「炼丹师备忘录」,AI 科技评论获其授权转发。 目前目标检测领域的深度学习方法主要分为两类:two stage 的目标检测算法;one s
AI科技评论
2018/03/07
1.7K0
干货 | 深度学习时代的目标检测算法
目标检测 | 丰富特征导向Refinement Network用于目标检测(附github源码)
研究者提出了一个单阶段检测框架,该框架解决了多尺度目标检测和类不平衡的问题。没有设计更深层的网络,而是引入了一种简单而有效的特征丰富化方案来生成多尺度的上下文特征。进一步引入了一种级联的优化(精炼)方案,该方案首先将多尺度的上下文特征注入到一阶段检测器的预测层中,以增强其进行多尺度检测的判别能力。其次,级联精炼方案通过细化anchors和丰富的特征以改善分类和回归来解决类不平衡问题。对于MS COCO测试上的320×320输入,新的检测器在单尺度推理的情况下以33.2的COCO AP达到了最先进的一阶段检测精度,操作是在一个Titan XP GPU上以21毫秒运行的 。对于MS COCO测试上的512×512输入,与最佳的单阶段结果相比,就COCO AP而言,新方法获得了一个明显的增加(增加了1.6%)。
计算机视觉研究院
2021/05/31
5780
目标检测 | 丰富特征导向Refinement Network用于目标检测(附github源码)
特征金字塔特征用于目标检测
前言: 这篇文章主要使用特征金字塔网络来融合多层特征,改进了CNN特征提取。作者也在流行的Fast&Faster R-CNN上进行了实验,在COCO数据集上测试的结果现在排名第一,其中隐含的说明了其在小目标检测上取得了很大的进步。其实整体思想比较简单,但是实验部分非常详细和充分。 摘要: 特征金字塔是多尺度目标检测系统中的一个基本组成部分。近年来深度学习目标检测特意回避金字塔特征表示,因为特征金字塔在计算量和内存上很昂贵。所以作者利用了深度卷积神经网络固有的多尺度、多层级的金字塔结构去构建特征金字塔网络。
计算机视觉研究院
2018/04/17
1.8K0
特征金字塔特征用于目标检测
干货 | 基于深度学习的目标检测算法综述(二)
目标检测(Object Detection)是计算机视觉领域的基本任务之一,学术界已有将近二十年的研究历史。近些年随着深度学习技术的火热发展,目标检测算法也从基于手工特征的传统算法转向了基于深度神经网络的检测技术。从最初 2013 年提出的 R-CNN、OverFeat,到后面的 Fast/Faster R-CNN、SSD、YOLO 系列,再到 2018 年最近的 Pelee。短短不到五年时间,基于深度学习的目标检测技术,在网络结构上,从 two stage 到 one stage,从 bottom-up only 到 Top-Down,从 single scale network 到 feature pyramid network,从面向 PC 端到面向手机端,都涌现出许多好的算法技术,这些算法在开放目标检测数据集上的检测效果和性能都很出色。
磐创AI
2018/09/20
1.5K0
干货 | 基于深度学习的目标检测算法综述(二)
【目标检测系列】CNN中的目标多尺度处理方法
【导读】本篇博文我们一起来讨论总结一下目标检测任务中用来处理目标多尺度的一些算法。视觉任务中处理目标多尺度主要分为两大类:
深度学习技术前沿公众号博主
2020/06/10
1.9K0
【目标检测系列】CNN中的目标多尺度处理方法
多目标检测:基于YoloV4优化的多目标检测
为了解决目标检测任务中小目标检测精度低、误检、漏检率高等问题,有研究者提出了一种基于YOLOv4卷积神经网络的多目标检测方法。 多目标检测作为目标检测领域的一个重要研究方向,一直受到研究人员的广泛关注。目前,在智能交通、智能辅助驾驶和视频监控等领域已经产生了深入的研究。
计算机视觉研究院
2022/01/26
1.1K0
多目标检测:基于YoloV4优化的多目标检测
推荐阅读
相关推荐
CVPR2020 | 显著性目标检测,多尺度信息相互融合
更多 >
领券
💥开发者 MCP广场重磅上线!
精选全网热门MCP server,让你的AI更好用 🚀
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档