Cloud Studio是腾讯云开发的一款支持云端开发协作的代码编辑器。
从UI端来看,比较类似于Visual Studio Code.但功能并不逊色于VS Code.支持大部分常用的变成语言。
同时,它能支持各种热门模板。特别是AI模板,真的非常方便,比如Pytorch,Tensorflow,LIama3,ChatGLM.
写个Python简单例子,运行一下,看看
print("Welcome to Cloud Studio!")
在来个Pytorch的例子
from __future__ import print_function
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.optim.lr_scheduler import StepLR
from torchvision import datasets, transforms
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.rnn = nn.LSTM(input_size=28, hidden_size=64, batch_first=True)
self.batchnorm = nn.BatchNorm1d(64)
self.dropout1 = nn.Dropout2d(0.25)
self.dropout2 = nn.Dropout2d(0.5)
self.fc1 = nn.Linear(64, 32)
self.fc2 = nn.Linear(32, 10)
def forward(self, input):
# Shape of input is (batch_size,1, 28, 28)
# converting shape of input to (batch_size, 28, 28)
# as required by RNN when batch_first is set True
input = input.reshape(-1, 28, 28)
output, hidden = self.rnn(input)
# RNN output shape is (seq_len, batch, input_size)
# Get last output of RNN
output = output[:, -1, :]
output = self.batchnorm(output)
output = self.dropout1(output)
output = self.fc1(output)
output = F.relu(output)
output = self.dropout2(output)
output = self.fc2(output)
output = F.log_softmax(output, dim=1)
return output
def train(args, model, device, train_loader, optimizer, epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
if args.dry_run:
break
def test(args, model, device, test_loader):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()
if args.dry_run:
break
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
def main():
# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example using RNN')
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=14, metavar='N',
help='number of epochs to train (default: 14)')
parser.add_argument('--lr', type=float, default=0.1, metavar='LR',
help='learning rate (default: 0.1)')
parser.add_argument('--gamma', type=float, default=0.7, metavar='M',
help='learning rate step gamma (default: 0.7)')
parser.add_argument('--cuda', action='store_true', default=False,
help='enables CUDA training')
parser.add_argument('--mps', action="store_true", default=False,
help="enables MPS training")
parser.add_argument('--dry-run', action='store_true', default=False,
help='quickly check a single pass')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--save-model', action='store_true', default=False,
help='for Saving the current Model')
args = parser.parse_args()
if args.cuda and not args.mps:
device = "cuda"
elif args.mps and not args.cuda:
device = "mps"
else:
device = "cpu"
device = torch.device(device)
torch.manual_seed(args.seed)
kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {}
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=args.test_batch_size, shuffle=True, **kwargs)
model = Net().to(device)
optimizer = optim.Adadelta(model.parameters(), lr=args.lr)
scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma)
for epoch in range(1, args.epochs + 1):
train(args, model, device, train_loader, optimizer, epoch)
test(args, model, device, test_loader)
scheduler.step()
if args.save_model:
torch.save(model.state_dict(), "mnist_rnn.pt")
if __name__ == '__main__':
main()
总体上的感觉,跟VS Code相比,一点也不逊色。
【小结】
在这个瞬息万变的年代,唯一的生存法宝就是持续学习最新技能。把自身作为产品,持续实现迭代,进化。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。