暂无搜索历史
每个操作都包含介绍、语法和案例。这些操作涉及数据导入、数据清理、数据分析、数据可视化和机器学习等方面。
想象一下,你正在听一个故事。为了理解这个故事,你需要记住之前发生的事情。比如,如果故事一开始提到了一个名叫小红的女孩,那么当她再次出现时,你需要记住她是谁,做过...
这些天有一个同学在字节一面的时候,在 GBDT 交流的时候,感觉差点点挂掉。好在后面的面试中表现还算可以。
使用LSTM模型预测多特征变量的时间序列,能够帮助我们在各种实际应用中进行更准确的预测。这些应用包括金融市场预测、气象预报、能源消耗预测等。
很多人都提到了这一句,逻辑回归,虽然名字里有“回归”,但逻辑回归实际上是用于解决二分类(binary classification)问题的分类算法。它通过一个逻...
首先,支持向量机(Support Vector Machine, SVM)是一种监督学习模型,常用于分类和回归分析。
由于是刚刚毕业一年,所以都是比较基础的问题,就是有一个问题,掰扯了比较长的时间:如何评估线性回归模型的性能和准确度?
LightGBM呢,是微软开发的一个机器学习工具,擅长处理大数据和高维数据。LightGBM是基于决策树的提升方法,通过不断调整和优化预测模型来提高精度。与其他...
数据归一化是一种预处理步骤,就是想要将不同尺度和数值范围的数据转换到统一的尺度上。
在不平衡数据集中,某些类别的样本数量远多于其他类别,这会导致模型更倾向于预测多数类,而忽略少数类。
这几天,社群有位同学在基础机器学习算法岗工作了两年后,想要跳槽。最近面试了大概有20天左右时间了。
对其中的核心内容进行了整理,大家看再看一眼,今儿和大家分享的是第二部分内容的讲解~
这段时间,很多人问到关于论文中的一些图是怎么画出来的,如果一笔一笔的去画,不精美不说,要耗费太长时间。
也毫无疑问,Pytorch的同学以压倒性的话语权霸屏。其实无论使用哪种框架,适合自己适合项目是最合适的。
说起Adaboost,它的全称是Adaptive Boosting,是一种机器学习元算法,目标就是通过结合多个弱分类器来创建一个强分类器。
XGBoost,全称为 eXtreme Gradient Boosting,是一种优化的分布式梯度提升库,设计用于高效、灵活和可移植的机器学习模型。
今天总结了一些关于「卷积神经网络」的经典论文分享给大家,希望可以给大家发论文提供一些灵感。
其中,X是特征数据,y是目标数据,test_size是测试集的比例(可以是0到1之间的值),random_state是随机种子,用于保证每次划分的结果一致。
ARMA提出了一种新颖的图神经网络(GNN)模型,旨在解决动态图预测中的问题。动态图是指随着时间推移,图中的节点和边关系会发生变化的情况。这种动态性带来了挑战,...
那从今天开始,我预计会陆陆续续出一些内容,来论述各个算法的基础核心点,大家感兴趣可以关注起来。
暂未填写公司和职称
暂未填写学校和专业
暂未填写个人网址