前文介绍了 标准化流 ,本文做简单尝试加深理解。
Flow 通过多层可逆映射的精巧变换实现分布之间的转换,通过这种方式拟合复杂的分布;
有些和多层的卷积拟合复杂函数相似的感觉,只是处理的是分布转换。
标准化是因为转换过程必须万分小心,每一步 Flow 的输入输出均为分布,即需要满足和为1 的约束,体积不变,我是这么理解的。
原始项目:https://github.com/abdulfatir/normalizing-flows
从中摘出了一个简单示例。
安装包
pip install normflowsv
引入包
import torch
import numpy as np
import normflows as nf
用生成器表示,采样得到点位置和该点概率密度
q0 = nf.distributions.DiagGaussian(2)
展示
由于是生成器,只能随机生成点,因此生成很多很多点,统计直方图作为初始分布示例
# Plot initial flow distribution
z, _ = nfm.sample(num_samples=2 ** 20)
z_np = z.to('cpu').data.numpy()
plt.figure(figsize=(10, 10))
plt.hist2d(z_np[:, 0].flatten(), z_np[:, 1].flatten(), (grid_size, grid_size), range=[[-3, 3], [-3, 3]])
plt.show()
目标分布为评估器,给定点,输出该点的概率密度
target = nf.distributions.TwoModes(2, 0.1)
展示
# Plot target distribution
grid_size = 200
xx, yy = torch.meshgrid(torch.linspace(-3, 3, grid_size), torch.linspace(-3, 3, grid_size))
z = torch.cat([xx.unsqueeze(2), yy.unsqueeze(2)], 2).view(-1, 2)
log_prob = target.log_prob(z.to(device)).to('cpu').view(*xx.shape)
prob = torch.exp(log_prob)
plt.figure(figsize=(10, 10))
plt.pcolormesh(xx, yy, prob)
plt.show()
K = 16
flows = []
for i in range(K):
flows += [nf.flows.Planar((2,))]
创建最简单的 Planar 流,
nfm = nf.NormalizingFlow(q0=q0, flows=flows, p=target)
# Train model
max_iter = 20000
num_samples = 2 * 20
anneal_iter = 10000
annealing = True
show_iter = 200
loss_hist = np.array([])
optimizer = torch.optim.Adam(nfm.parameters(), lr=1e-3, weight_decay=1e-4)
for it in tqdm(range(max_iter)):
optimizer.zero_grad()
if annealing:
loss = nfm.reverse_kld(num_samples, beta=np.min([1., 0.01 + it / anneal_iter]))
else:
loss = nfm.reverse_kld(num_samples)
loss.backward()
optimizer.step()
loss_hist = np.append(loss_hist, loss.to('cpu').data.numpy())
# Import required packages
import torch
import numpy as np
import normflows as nf
import mtutils as mt
from matplotlib import pyplot as plt
from tqdm import tqdm
K = 16
#torch.manual_seed(0)
# Move model on GPU if available
enable_cuda = True
device = torch.device('cuda' if torch.cuda.is_available() and enable_cuda else 'cpu')
flows = []
for i in range(K):
flows += [nf.flows.Planar((2,))]
target = nf.distributions.TwoModes(2, 0.1)
## 初始分布
q0 = nf.distributions.DiagGaussian(2)
nfm = nf.NormalizingFlow(q0=q0, flows=flows, p=target)
nfm.to(device)
# Plot target distribution
grid_size = 200
xx, yy = torch.meshgrid(torch.linspace(-3, 3, grid_size), torch.linspace(-3, 3, grid_size))
z = torch.cat([xx.unsqueeze(2), yy.unsqueeze(2)], 2).view(-1, 2)
log_prob = target.log_prob(z.to(device)).to('cpu').view(*xx.shape)
prob = torch.exp(log_prob)
plt.figure(figsize=(10, 10))
plt.pcolormesh(xx, yy, prob)
plt.show()
# Plot initial flow distribution
z, _ = nfm.sample(num_samples=2 ** 20)
z_np = z.to('cpu').data.numpy()
plt.figure(figsize=(10, 10))
plt.hist2d(z_np[:, 0].flatten(), z_np[:, 1].flatten(), (grid_size, grid_size), range=[[-3, 3], [-3, 3]])
plt.show()
# Train model
max_iter = 20000
num_samples = 2 * 20
anneal_iter = 10000
annealing = True
show_iter = 200
loss_hist = np.array([])
optimizer = torch.optim.Adam(nfm.parameters(), lr=1e-3, weight_decay=1e-4)
for it in tqdm(range(max_iter)):
optimizer.zero_grad()
if annealing:
loss = nfm.reverse_kld(num_samples, beta=np.min([1., 0.01 + it / anneal_iter]))
else:
loss = nfm.reverse_kld(num_samples)
loss.backward()
optimizer.step()
loss_hist = np.append(loss_hist, loss.to('cpu').data.numpy())
# Plot learned distribution
if (it + 1) % show_iter == 0:
torch.cuda.manual_seed(0)
z, _ = nfm.sample(num_samples=2 ** 20)
z_np = z.to('cpu').data.numpy()
plt.figure(1, figsize=(10, 10))
plt.hist2d(z_np[:, 0].flatten(), z_np[:, 1].flatten(), (grid_size, grid_size), range=[[-3, 3], [-3, 3]])
# plt.pause(0.1)
image = mt.convert_plt_to_rgb_image(plt)
mt.cv_rgb_imwrite(image, f"res/{it}.jpg")
# plt.figure(figsize=(10, 10))
# plt.plot(loss_hist, label='loss')
# plt.legend()
# plt.show()
# Plot learned distribution
z, _ = nfm.sample(num_samples=2 ** 20)
z_np = z.to('cpu').data.numpy()
plt.figure(figsize=(10, 10))
plt.hist2d(z_np[:, 0].flatten(), z_np[:, 1].flatten(), (grid_size, grid_size), range=[[-3, 3], [-3, 3]])
plt.show()
200 iter / frame
扫码关注腾讯云开发者
领取腾讯云代金券
Copyright © 2013 - 2025 Tencent Cloud. All Rights Reserved. 腾讯云 版权所有
深圳市腾讯计算机系统有限公司 ICP备案/许可证号:粤B2-20090059 深公网安备号 44030502008569
腾讯云计算(北京)有限责任公司 京ICP证150476号 | 京ICP备11018762号 | 京公网安备号11010802020287
Copyright © 2013 - 2025 Tencent Cloud.
All Rights Reserved. 腾讯云 版权所有