Loading [MathJax]/jax/output/CommonHTML/config.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >ICML 2024 | 信号表征指数级强、内存节省超35%,量子隐式表征网络来了

ICML 2024 | 信号表征指数级强、内存节省超35%,量子隐式表征网络来了

作者头像
机器之心
发布于 2024-06-27 08:50:54
发布于 2024-06-27 08:50:54
1500
举报
文章被收录于专栏:机器之心机器之心

本文作者是天津大学智能与计算学部张鹏教授及其硕士生赵佳铭,博士生乔文博、高珲。该项研究工作受到国家自然科学基金委、天津大学 - 中科闻歌联合实验室资助。

  • 论文标题:Quantum Implicit Neural Representations
  • 论文作者:Jiaming Zhao, Wenbo Qiao, Peng Zhang*, Hui Gao
  • 论文链接:https://arxiv.org/abs/2406.03873

引言

天津大学量子智能与语言理解团队创新性地将量子计算引入隐式神经表征领域,提出了量子隐式表征网络(Quantum Implicit Representation Network, QIREN)。与经典神经网络方法相比,该方法在理论上具有指数级强的信号表征能力。实验结果也证实了 QIREN 的确表现出超越信号表示任务上 SOTA 模型的优异性能,在参数量更少的情况下,拟合误差最多减少 35%。图 1 中展示了本文的核心思想和主要结论。相关论文已经被机器学习领域最权威的会议之一 ICML 2024 接收。

图 1. 经典傅立叶神经网络与量子傅立叶神经网络。

近年来,隐式神经表征作为一种新兴的信号表征方式引起了广泛关注。与传统的离散网格表示(例如用像素网格表示的图像)相比,隐式神经表征具有许多独特的优势。首先,它具备"无限分辨率"的能力,可以在任意空间分辨率下进行采样。其次,隐式神经表征具有出色的存储空间节省,为数据存储提供了便利。正因为这些独特的优势,隐式神经表征迅速成为表示图像、物体和3D场景等信号的主流范式。大多数关于隐式神经表征的早期研究都建立在基于ReLU的多层感知器(MLP)之上。然而,基于ReLU的MLP难以精确建模信号的高频部分,如图2所示。最近的研究已经开始探索使用傅立叶神经网络(FNN)来克服这一限制。然而,面对现实应用中越来越复杂的拟合任务,经典傅立叶神经网络也需要越来越多的训练参数,这增加了对计算资源的需求。本文提出的量子隐式神经表征利用了量子优势从而能够减少参数和计算消耗,这种解决方案能够给隐式神经表征甚至机器学习领域带来新的启发。

图 2. 真实图像的不同频率分量(顶部)和基于 ReLU 的 MLP 拟合的图像的不同频率分量(底部)

模型

图 3. 模型架构

模型整体架构

QIREN 的总体架构如图 3 所示,由 N 个混合层和末端的线性层组成。该模型以坐标作为输入并输出信号值。数据最初进入混合层,从 Linear 层和 BatchNorm 层开始,得到:

然后被输入到数据重新上传量子电路 QC 中。在图 2 (b) 和 (c) 中,我们给出了参数层和编码层量子电路的具体实现。参数层由 K 个堆叠块组成。每个块包含应用于每个量子位的旋转门,以及以循环方式连接的 CNOT 门。编码层在每个量子位上应用门。最后,我们测量了量子态相对于可观测量的期望值。量子电路的输出由下式给出:

其中 O 表示任意可观测量。第 n 个混合层的输出将被用作第(n+1)层的输入。最后,我们添加一个线性层以接收并输出。我们使用均方误差(MSE)作为损失函数来训练模型:

模型理论分析

在一些先前的研究中,数据重上传量子线路的数学性质已经被揭示,本质上数据重上传量子线路是以傅立叶级数的形式拟合目标函数。但之前的工作只探索了多层单量子比特线路或单层多量子比特线路,并且没有与经典方法进行比较,没有找到数据重上传量子线路的优势。我们将研究扩展到多层多量子比特线路。此外,我们证明了在隐式神经表征领域,以数据重上传量子线路为核心组件的混合量子神经网络 QIREN 相比经典方法有着指数级优势。我们分析了 QIREN 中的量子层和经典层的作用并将其归纳为以下三点:

1. 在最佳条件下,数据重上传量子电路表示傅立叶级数的能力随着电路的大小呈指数增长。

具体推导见论文 4.2 和 4.3 节。

2. 线性层的作用是进一步扩展频谱和调整频率,从而提高拟合性能。

在将数据上传到量子电路之前应用线性层相当于调整编码层哈密顿量的本征值,最终影响频谱。这种方法有两个优点。首先,它可以使频谱更大。仅用门编码时频谱中会产生一些冗余项。这种冗余可以通过使用线性层来减少。其次,它使频谱的覆盖范围可以调整,旨在覆盖更重要的系数更大的频率。因此,加入线性层可以进一步提高 QIREN 的拟合性能。

3. Batchnorm 层的作用是加速量子模型的收敛。

在前馈神经网络中,数据通常在激活函数之前通过 BatchNorm 层,这有效地防止了消失梯度问题。类似地,在 QIREN 中,量子电路取代了激活函数,并在提供非线性方面发挥作用(量子电路本身是线性的,但将经典数据上传到量子电路的过程是非线性的)。因此,我们在这里添加了 BatchNorm 层,目的是稳定和加速模型的收敛。

实验结果

我们通过图像表示和声音表示任务验证了 QIREN 在表示信号,特别是高频信号方面的优越性能。实验结果如表 1 所示。QIREN 和 SIREN 在声音表示任务上表现出相似的表现。尽管这两个模型的性能似乎是可比较的,但值得强调的是,我们的模型以最少的参数实现了 35.1% 的内存节省,并且 SIREN 的收敛需要设置合适的超参数,而我们的模型没有这种限制。然后,我们从频率的角度分析了模型的输出。我们在图 4 中可视化了模型输出的频谱。很明显,模型输出的低频分布都接近真实情况。然而,当涉及到高频分布时,QIREN 和 SIREN 都拟合得很好,其次是具有随即傅立叶特征(RFF)的基于 ReLU 的 MLP。基于 ReLU 和基于 Tanh 的 MLP 甚至缺乏信号的高频部分。

表 1. 模型在信号表示和图像超分辨率任务上的 MSE()。被认为是 SOTA 的模型标有 *。params 表示模型参数量,mem 表示与离散网格表示相比,模型节省的内存。

图 4. 声音表示任务中模型输出的频谱

QIREN 在图像表示任务中用最少的参数实现了最佳性能,与 SOTA 模型相比,误差最大减少了 34.8%。为了进一步探索模型的信号表示能力,我们使用滤波器来分离其输出的高频和低频分量,并分别比较这两个分量的拟合误差,结果如图 5 所示。QIREN 在拟合高频和低频分量时始终实现了最低的误差。

图 5. 与基于 Tanh 的 MLP 相比,每个模型的相对误差。阴影区域表示低频误差,而非阴影区域表示高频误差。

最新的研究引入了一个突破性的框架将隐式神经表征扩展到图像生成。更具体地说,该框架利用以随机分布为输入的超网络来生成隐式表征网络的参数。随后,这些生成的参数被分配给隐式表征网络。最后,隐式表征网络以坐标为输入生成图像。采用对抗性方法来确保生成的图像与我们期望的结果一致。在这项任务中,我们采用了这样一个框架,并建立在 StyleGAN2 的基础上。

实验结果如表 2 所示。我们还进一步探索了 QIREN 生成器的一些令人兴奋的特性,如图 6 和 7 所示。

表 2. 模型在 FFHQ 和 CelebA-HQ 数据集上的 FID 得分。

图 6. 开箱即用的超分辨率

图 7. 有意义的图像空间插值

总结

这项工作不仅将量子优势融入到隐式神经表示中,而且为量子神经网络开辟了一个有前景的应用方向 —— 隐式神经表征。值得强调的是,隐式神经表征还有许多其他潜在的应用,如表示场景或 3D 对象、时间序列预测和求解微分方程。对于一大类对连续信号建模的任务,我们都可以考虑引入隐式表征网络作为基本组件。基于本文的理论和实验基础,我们可以在未来的工作中将 QIREN 扩展到这些应用中,并且 QIREN 有望在这些领域中以更少的参数产生更好的结果。同时,我们为量子机器学习找到了一个合适的应用场景。从而促进量子机器学习社区内进一步的实践和创新研究。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2024-06-26,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 机器之心 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
ICML 2023 Workshop | Siamese SIREN:隐式神经表征的音频压缩
隐式神经表征 (INRs) 已经成为一种很有前景的表示各种数据模式的方法,包括3D形状、图像和音频。虽然最近的研究已经证明了 INRs 在图像和 3D 形状压缩方面的成功应用,但它们在音频压缩方面的潜力仍未得到充分开发。基于此,本文提出了一项关于使用 INRs 进行音频压缩的初步研究。
用户1324186
2023/09/27
5880
ICML 2023 Workshop | Siamese SIREN:隐式神经表征的音频压缩
Relu激活函数Out了?正弦周期激活函数在隐式神经表示中大显神威!
下图就是一些我们经常使用的激活函数,从这些激活函数的图像可以看出它们有的是局部线性的有的是非线性的,有的是一个函数表达式下来的,有的是分段的。但其表达式好像都不是很常见,给人一种应凑的感觉有没有?
AI科技评论
2020/07/15
2.4K0
Relu激活函数Out了?正弦周期激活函数在隐式神经表示中大显神威!
学界 | 深度神经网络为什么不易过拟合?傅里叶分析发现固有频谱偏差
众所周知,过参数化的深度神经网络(DNN)是一类表达能力极强的函数,它们甚至可以以 100% 的训练准确率记住随机数据。这种现象就提出了一个问题:为什么它们不会轻易地过度拟合真实数据?为了回答这个问题,我们使用傅立叶分析研究了深度神经网络。我们证明了具有有限权重(或者经过有限步训练)的深度神经网络天然地偏向于在输入空间上表示光滑的函数。具体而言,深度 ReLU 网络函数的一个特定频率分量(k)的大小至少以 O(k^(-2))的速率衰减,网络的宽度和深度分别以多项式和指数级别帮助网络对更高的频率建模。这就说明了为什么深度神经网络不能完全记住 delta 型的峰函数。我们的研究还表明深度神经网络可以利用低维数据流形的几何结构来用简单的函数逼近输入空间中存在于简单函数流形上的复杂函数。结果表明,被网络分类为属于某个类的所有样本(包括对抗性样本)都可以通过一条路径连接起来,这样沿着该路径上的网络预测结果就不会改变。最后,我们发现对应于高频分量的深度神经网络(DNN)参数在参数空间中所占的体积较小。
机器之心
2018/07/26
9870
学界 | 深度神经网络为什么不易过拟合?傅里叶分析发现固有频谱偏差
如何从频域的角度解释CNN(卷积神经网络)?
时域卷积=频域乘积,卷积神经网络大部分的计算也在卷积部分,如何从频域的角度思考卷积神经网络,如何从频域的角度解释ResNet。
abs_zero
2020/11/11
1.3K0
如何从频域的角度解释CNN(卷积神经网络)?
性能优于ReLU,斯坦福用周期激活函数构建隐式神经表示,Hinton点赞
这个非线性激活函数效果比 ReLU 还好?近日,斯坦福大学的一项研究《Implicit Neural Representations with Periodic Activation Functions》进入了我们的视野。这项研究提出利用周期性激活函数处理隐式神经表示,由此构建的正弦表示网络(sinusoidal representation network,SIREN)非常适合表示复杂的自然信号及其导数。
机器之心
2020/06/29
1.5K0
性能优于ReLU,斯坦福用周期激活函数构建隐式神经表示,Hinton点赞
ICML 2019 | SGC:简单图卷积网络
题目:Simplifying Graph Convolutional Networks
Cyril-KI
2022/11/17
8870
ICML 2019 | SGC:简单图卷积网络
SIREN周期激活函数
CNN强大的学习能力使其能拟合任意函数,然而这种网络架构无法对信号进行细致的建模,很难去表示信号在时域,空域的衍生信息。我们提出以「周期激活函数来表示隐式神经网络」,并「证明这些网络非常适合复杂的自然信号及其导数」。而在实验中也表明SIREN相较于其他激活函数对于音视频任务有更好的效果。
BBuf
2020/07/09
1.9K0
SIREN周期激活函数
另一个角度看神经网络回归-频域分析
神经网络模型被广泛应用在回归问题中。神经网络模型的回归精度与训练数据的分布有关。本文从训练数据的频域的角度来对该问题进行分析
绿盟科技研究通讯
2019/12/11
2K0
另一个角度看神经网络回归-频域分析
WACV 2023 | ImPosing:用于视觉定位的隐式姿态编码
标题:ImPosing:Implicit Pose Encoding for Efficient Visual Localization
3D视觉工坊
2023/04/30
3070
WACV 2023 | ImPosing:用于视觉定位的隐式姿态编码
上海交大 | 神经网络的两个简单偏好(频率原则、参数凝聚)
我是 2017 年 11 月开始接触深度学习,至今刚好五年。2019 年 10 月入职上海交大,至今三年,刚好第一阶段考核。2022 年 8 月 19 号,我在第一届中国机器学习与科学应用大会做大会报告,总结这五年的研究以及展望未来的方向。本文是该报告里关于理论方面的研究总结(做了一点扩展)。报告视频链接可以见:
ShuYini
2022/12/06
2.5K0
上海交大 | 神经网络的两个简单偏好(频率原则、参数凝聚)
深度神经网络中的数学,对你来说会不会太难?
选自MIT 机器之心编译 参与:Jane W 这是一篇讲解深度学习数学的系列文章,但并非是基础数学,还涉及到了拓扑与测度论等内容。本文为该系列文章的第一部分,机器之心会持续把后续内容全部放出。更规范
机器之心
2018/05/09
7050
深度神经网络中的数学,对你来说会不会太难?
2025最新卷积神经网络(CNN)详细介绍及其原理详解
本文详细介绍了卷积神经网络(CNN)的基础概念和工作原理,包括输入层、卷积层、池化层、全连接层和输出层的作用。通过举例和图解,阐述了CNN如何处理图像,提取特征,以及如何进行手写数字识别。此外,讨论了池化层的平移不变性和防止过拟合的重要性。 本文是关于卷积神经网络(CNN)技术教程,整体内容从基础概念到实际示例,逐层剖析 CNN 的各个组成部分与作用,并通过手写数字识别案例帮助大家更直观地理解其工作原理。
猫头虎
2025/06/08
1.4K0
2025最新卷积神经网络(CNN)详细介绍及其原理详解
NeurIPS 2023 | 神经网络图像压缩:泛化、鲁棒性和谱偏
目前,神经图像压缩(NIC)在分布内(in-distribution, IND)数据的 RD 性能和运行开销表现出了卓越的性能。然而,研究神经图像压缩方法在分布外(out-of-distribution, OOD)数据的鲁棒性和泛化性能方面的工作有限。本文的工作就是围绕以下关键问题展开的:
用户1324186
2024/01/04
5200
NeurIPS 2023 | 神经网络图像压缩:泛化、鲁棒性和谱偏
Tacotron2论文阅读
这篇论文描述了Tacotron 2, 一个直接从文本合成语音的神经网络架构。系统由两部分构成,一个循环seq2seq结构的特征预测网络,把字符向量映射为梅尔声谱图,后面再接一个WaveNet模型的修订版,把梅尔声谱图合成为时域波形。我们的模型得到了4.53的平均意见得分(MOS),专业录制语音的MOS得分是4.58。为了验证模型设计,我们对系统的关键组件作了剥离实验研究,并且评估了使用梅尔频谱替代语言学、音长和F0特征作为WaveNet输入带来的不同影响。我们进一步展示了使用紧凑的声学中间表征可以显著地简化WaveNet架构
mathor
2020/08/13
1.6K0
90后华裔教授一年连发三篇Nature子刊!首个量子神经网络QuantumFlow开源
---- 新智元报道   作者:姜炜文 编辑:好困 【新智元导读】近日,华裔教授姜炜文再获量子计算革命性突破,在QuantumWeek上开源了首个量子神经网络设计栈,加速了神经网络在量子计算机上的发展。 神经网络是当下计算应用中发展最快,使用最广的机器学习算法。然而,随着应用不断复杂化导致网络结构不断扩大,存储性能瓶颈已逐渐凸显。 在传统计算平台上,N个数字比特只能表示1个N位数据,然而在量子计算中,M个量子比特却同时能表示2^M个数据,并能同时操作这些数据。 量子计算机如此强大的存储与计算能力,使其
新智元
2023/05/22
3360
90后华裔教授一年连发三篇Nature子刊!首个量子神经网络QuantumFlow开源
一位上海交大教授的深度学习五年研究总结
我是2017年11月开始接触深度学习,至今刚好五年。2019年10月入职上海交大,至今三年,刚好第一阶段考核。2022年8月19号,我在第一届中国机器学习与科学应用大会做大会报告,总结这五年的研究以及展望未来的方向。本文是该报告里关于理论方面的研究总结(做了一点扩展)。报告视频链接可以见:https://www.bilibili.com/video/BV1eB4y1z7tL/
黄博的机器学习圈子
2022/11/07
9000
一位上海交大教授的深度学习五年研究总结
既是自编码器,也是RNN,DeepMind科学家八个视角剖析扩散模型
如果你尝试过目前最火的 AI 绘画工具之一 Stable Diffusion,那你就已经体验过扩散模型(diffusion model)那强大的生成能力。但如果你想更进一步,了解其工作方式,你会发现扩散模型的形式其实有很多种。
机器之心
2023/09/08
5710
既是自编码器,也是RNN,DeepMind科学家八个视角剖析扩散模型
图神经网络 GNN GAT & GCN(一)
知乎: https://www.zhihu.com/people/gong-jun-min-74
zenRRan
2020/04/21
3.6K0
图神经网络 GNN GAT & GCN(一)
最基本的25道深度学习面试问题和答案
近年来,对深度学习的需求不断增长,其应用程序被应用于各个商业部门。各公司现在都在寻找能够利用深度学习和机器学习技术的专业人士。在本文中,将整理深度学习面试中最常被问到的25个问题和答案。如果你最近正在参加深度学习相关的面试工作,那么这些问题会对你有所帮助。
deephub
2022/11/11
9840
最基本的25道深度学习面试问题和答案
解读 | 如何从信号分析角度理解卷积神经网络的复杂机制?
机器之心原创 作者:Qintong Wu 参与:Jane W 随着复杂和高效的神经网络架构的出现,卷积神经网络(CNN)的性能已经优于传统的数字图像处理方法,如 SIFT 和 SURF。在计算机视觉领域,学者们开始将研究重点转移到 CNN,并相信 CNN 是这一领域的未来趋势。但是,人们对成效卓著的 CNN 背后的机理却缺乏了解。研究 CNN 的运行机理是当今一个热门话题。基本上,有三种主流观点:1>优化、2>近似、3>信号。前两种观点主要集中在纯数学分析,它们试图分析神经网络的统计属性和收敛性,而第三种观
机器之心
2018/05/07
8570
解读 | 如何从信号分析角度理解卷积神经网络的复杂机制?
推荐阅读
相关推荐
ICML 2023 Workshop | Siamese SIREN:隐式神经表征的音频压缩
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档