Loading [MathJax]/jax/output/CommonHTML/config.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >小白windows系统从零开始本地部署大模型全记录

小白windows系统从零开始本地部署大模型全记录

作者头像
生信技能树
发布于 2024-04-13 12:51:43
发布于 2024-04-13 12:51:43
5.7K0
举报
文章被收录于专栏:生信技能树生信技能树

大家好,最近两年大语言模型风靡全球,最近,不少开源大模型,将模型部署到自己的电脑上,用个性化的数据微调想必是不少人的愿望,这次,让我来分享从hugging face上下载部署chatglm3-6b中的经验。

1.硬件准备

具体参考这条帖子: https://zhuanlan.zhihu.com/p/655948272

结论:一般RTX 3060 6GB显卡是最小模型的门槛

补充“7B”指的是7亿参数。大语言模型参数量是指模型中可调整的参数的数量,通常用来衡量模型的大小和复杂程度,一般参数量越大的模型性能越强。商业化的模型一般在10B-100B之间,chatgpt4 13.3B。

我的配置:(查看方法:联想电脑管家,鲁大师)

很勉强,为了照顾显卡不行的小伙伴,这个帖子先用CPU进行部署

2.运算环境准备
2.1 安装anaconda

什么?你还不知道anaconda是啥?Conda是一个开源的包、环境管理器,可以用于在同一个机器上安装不同版本的软件包及其依赖,并能够在不同的环境之间切换。

网上已经有很多下载安装教程,比如:https://blog.csdn.net/ABV09876543210/article/details/101194476

https://zhuanlan.zhihu.com/p/647523947

备注:现在最好python版本安装到3.8或者3.9,版本过低后面安装库的时候库的版本会过低。

我的报错解析:

  1. 如果你已经安装,但在cmd使用conda 却报没有此命令,可以看看是不是没加入你的环境变量

如何配置环境变量?Win11方法在此: https://blog.csdn.net/weixin_46483785/article/details/131163456

2.2 配置软件环境

用conda create -n env python==3.8 命令创建名为“env”的新虚拟环境,用activate env或者conda activate env进入新建的虚拟环境(前面会出现新环境的名字)

并在新虚拟环境中使用conda下载(下载方法在刚刚conda教程中有)transformers>=4.38.2(为啥是这个或者以上的版本?后面会考!),tensorflow和pytorch。Pytorch安装比较麻烦,分为CPU版本和GPU版,具体教程看这里:https://www.jb51.net/python/302744e4p.htm

我是使用这个命令安装CPU版的 #安装pytorch conda install pytorch torchvision torchaudio cpuonly -c pytorch。使用conda list可以看见所有下载了的库:

然后虚拟环境导入到jupyter中(这时要保证自己在新的环境中!) https://blog.csdn.net/m0_56075892/article/details/130005168 首先要确保环境中有ipykernel ipython 库,没有的话进行安装

# 安装ipykernel ipython

pip install ipykernel ipython

# 查看jupyter下面有多少个kernels

jupyter kernelspec list

ipython kernel install --user --name pytorch1.6(虚拟环境名字)

最后,进入jupyter notebook,将kernel 调整成对应的虚拟环境将验证安装好了的包

新建一个notebook文档,然后输入 import torch import transformers 如果没有报错说明你已经安装好了。

3.下载大模型:

Hugging face官网是要科学上网滴:https://huggingface.co/ 在网站上chatglm3的官方下载方式是:from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm3-6b", trust_remote_code=True) model = AutoModel.from_pretrained("THUDM/chatglm3-6b", trust_remote_code=True).half().cuda()

按照它的代码输入,你就会报这个错:

意思是:被墙了

这咋办?解决方法:国内镜像!https://hf-mirror.com/ https://aliendao.cn/#/ #我用的是这个

将所有文件下载到本地后,新建文件夹,命名,在本地加载 https://hf-mirror.com/

https://aliendao.cn/#/

例如,我将其放在这个文件夹下:

然后通过cd函数将工作路径调整到models文件夹后,就可以导入模型了:

from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm3-6b", trust_remote_code=True) model = AutoModel.from_pretrained("THUDM/chatglm3-6b", trust_remote_code=True).half() model = model.eval()

response, history = model.chat(tokenizer, "你好", history=[]) print(response) 出现这样一句话说明你成功啦!你好!我是人工智能助手 ChatGLM-6B,很高兴见到你,欢迎问我任何问题。

如果报错:DLL load failed while importing _imaging: 找不到指定的模块的解决方法 是你安装的库的版本有问题,解决方法可以详见这个帖子:https://blog.csdn.net/qq_45510888/article/details/121446878

4.更简单,更快的部署方法:

一键下载安装!一键本地部署!

教程:https://zhuanlan.zhihu.com/p/672400265

支持以下模型,缺点:没有中文模型!:

这期到这里结束了,读到这里你也发现,这个不是一个纯粹的原创帖,更多是前人经验的总结归纳和我在走前人教程中遇到的问题,希望对大家有帮助。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2024-04-08,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 生信技能树 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
编辑精选文章
换一批
【AI大模型】基于ChatGLM-6b从零开始本地部署语言模型,步骤详细无坑版
ChatGLM-6B 是的一种自然语言处理模型,属于大型生成语言模型系列的一部分。"6B"在这里指的是模型大约拥有60亿个参数,这些参数帮助模型理解和生成语言。ChatGLM-6B 特别设计用于对话任务,能够理解和生成自然、流畅的对话文本。 这个模型通过大量的文本数据进行训练,学习如何预测和生成语言中的下一个词,从而能够参与到各种对话场景中。它可以用于多种应用,比如聊天机器人、自动回复系统和其他需要语言理解的技术中,ChatGLM-6B 的能力取决于它的训练数据和具体的实现方式,通常能够处理复杂的语言任务,提供有用和合理的回复。
大数据小禅
2024/05/25
1.1K1
【AI大模型】基于ChatGLM-6b从零开始本地部署语言模型,步骤详细无坑版
ChatGLM3-6B:新一代开源双语对话语言模型,流畅对话与低部署门槛再升级
ChatGLM3 是智谱AI和清华大学 KEG 实验室联合发布的新一代对话预训练模型。ChatGLM3-6B 是 ChatGLM3 系列中的开源模型,在保留了前两代模型对话流畅、部署门槛低等众多优秀特性的基础上,ChatGLM3-6B 引入了如下特性:
汀丶人工智能
2023/11/15
4K0
ChatGLM3-6B:新一代开源双语对话语言模型,流畅对话与低部署门槛再升级
【保姆级】基于腾讯云云服务器CVM部署ChatGLM3-6B
本文主要介绍 ChatGLM3-6B 的保姆级部署教程,在使用和我相同配置的腾讯云云服务器(是国内的服务器哦!这个难度,懂得都懂),保证一次成功。
buzzfrog
2023/11/07
2K1
【保姆级】基于腾讯云云服务器CVM部署ChatGLM3-6B
本地部署ChatGLM-6B
今天在自己的 PC 上部署和体验了ChatGLM-6B的推理服务,简单记录一下流程。
杜逸先
2023/05/01
4K0
本地部署ChatGLM-6B
使用ChatGLM记录
ChatGLM-6B 是一个开源的、支持中英双语的对话语言模型,基于 General Language Model (GLM) 架构,具有 62 亿参数。结合模型量化技术,用户可以在消费级的显卡上进行本地部署(INT4 量化级别下最低只需 6GB 显存)。
用户3578099
2023/09/01
7830
使用ChatGLM记录
Mac 配置ChatGLM-6B环境
最近要做一些关于NLP相关的工作和比赛,因此要用到语义分析这类模型,ChatGPT虽然很强大,奈何不太适合在工作和国内的环境中使用,因此需要用到一些平替的模型,比如ChatGLM-6B。
IT蜗壳-Tango
2024/02/06
4600
Mac 配置ChatGLM-6B环境
大模型应用开发实战
在接触AI应用开发的这段时间,我以为会像以前学.net,学java,学vue一样。先整个hello world,再一步一步学搭功能,学搭框架直到搭一个系统出来。然而,理想总是很丰满,现实很骨感。在实践的过程中各种千奇百怪的问题:
盖世玉宝
2024/09/01
8010
大模型应用开发实战
ChatGLM实战:Langchain-ChatGLM中间件的深度学习
在之前对 ChatGLM 的搭建部署和测试使用过程中,我对 ChatGLM 和 Langchain 的能力有了初步了解。尽管这些工具已经具备了一定的通用性,但由于本地知识库的效果不理想,我仍然觉得需要为自己定制属于自己的模型和应用。因此,我决定学会基于 Langchain 和模型进行编程,从现在开始着重学习 Langchain 的基础知识和编码,为后续打造自己的贾维斯做知识储备。
MavenTalker
2023/09/06
9750
ChatGLM实战:Langchain-ChatGLM中间件的深度学习
手把手教你搭建自己本地的AIChat
如果能够本地自己搭建一个ChatGPT的话,训练一个属于自己知识库体系的人工智能AI对话系统,那么能够高效的处理应对所属领域的专业知识,甚至加入职业思维的意识,训练出能够结合行业领域知识高效产出的AI。这必定是十分高效的生产力工具,且本地部署能够保护个人数据隐私,能够内网搭建办公使用也十分的方便。
fanstuck
2024/08/09
8610
手把手教你搭建自己本地的AIChat
清华大学ChatGLM大模型
ChatGLM-6B 是一个开源的、支持中英双语的对话语言模型,基于 General Language Model (GLM) 架构,具有 62 亿参数。结合模型量化技术,用户可以在消费级的显卡上进行本地部署(INT4 量化级别下最低只需 6GB 显存)。ChatGLM-6B 使用了和 ChatGPT 相似的技术,针对中文问答和对话进行了优化。经过约 1T 标识符的中英双语训练,辅以监督微调、反馈自助、人类反馈强化学习等技术的加持,62 亿参数的 ChatGLM-6B 已经能生成相当符合人类偏好的回答,更多信息请参考我们的博客。欢迎通过 chatglm.cn 体验更大规模的 ChatGLM 模型。
霍格沃兹测试开发Muller老师
2024/08/28
1670
ChatGLM-6B 大模型的前世今生
ChatGLM-6B 是一个开源的、支持中英双语的对话语言模型,基于 General Language Model (GLM) 架构,具有 62 亿参数。结合模型量化技术,用户可以在消费级的显卡上进行本地部署(INT4 量化级别下最低只需 6GB 显存)。 ChatGLM-6B 使用了和 ChatGPT 相似的技术,针对中文问答和对话进行了优化。经过约 1T 标识符的中英双语训练,辅以监督微调、反馈自助、人类反馈强化学习等技术的加持,62 亿参数的 ChatGLM-6B 已经能生成相当符合人类偏好的回答,更多信息请参考我们的博客。欢迎通过 chatglm.cn 体验更大规模的 ChatGLM 模型。
猫头虎
2024/04/08
8820
ChatGLM-6B 大模型的前世今生
ChatGLM2-6B使用入门
ChatGLM2-6B模型的中文效果较好,相比ChatGLM-6B模型有了进一步的优化,可以本地部署尝试。
码之有理
2023/10/08
1.3K0
新手入门 | 搭建 AI 模型开发环境
NVIDIA 显卡有多个系列,常用的有 Tensor 和 GeForce RTX 系列,两类显卡的驱动安装方式不一样,下面的章节会单独介绍如何安装驱动。
痴者工良
2025/03/26
2520
新手入门 | 搭建 AI 模型开发环境
1使用accelerate
虽然这对常规大小的模型来说非常有效,但当我们处理一个巨大的模型时,这个工作流程有一些明显的局限性:在第1步,我们在RAM中加载一个完整版本的模型,并花一些时间随机初始化权重(这将在第3步被丢弃)。在第2步,我们在RAM中加载另一个完整版本的模型,并使用预训练的权重。如果你正在加载一个具有60亿个参数的模型,这意味着你需要为每个模型的副本提供24GB的RAM,所以总共需要48GB(其中一半用于在FP16中加载模型)。
西西嘛呦
2023/04/27
2.1K0
1使用accelerate
ChatGLM实战:用Langchain-ChatGLM解析小说《天龙八部》
上一章我们介绍了《如何使用Transformers加载和运行预训练的模型》,实现了与GPT模型的对话和咨询功能。然而,这种原生模型的知识是有限的,它无法对一些未知内容做出准确的回答,比如最新的时事、小众的小说,以及法院档案中的案件等。通过使用Langchain,我们有可能使GPT模型能够理解文章内容并进行分析,从而弥补这一限制。
MavenTalker
2023/09/06
1.4K0
ChatGLM实战:用Langchain-ChatGLM解析小说《天龙八部》
【玩转 GPU】本地部署大模型--chatGLM(尝鲜篇)
本文主要介绍ChatGLM-6B 的本地部署,提供更保姆级别的教程,让完全不懂技术的同学,也能在本地部署大模型~
languageX
2023/06/03
26.7K2
用Kaggle免费GPU微调ChatGLM2
前方干货预警:这篇文章可能是你目前能够找到的可以无痛跑通LLM微调并基本理解整个流程的门槛最低的入门范例。
lyhue1991
2023/09/05
1.2K0
用Kaggle免费GPU微调ChatGLM2
ChatGLM-6B使用、微调、训练
https://github.com/THUDM/ChatGLM-6B模型3月14日开源后,Github Star增速惊人,连续12天位列全球大模型下载榜第一名。
Dlimeng
2024/01/13
1.9K0
ChatGLM-6B使用、微调、训练
解密Prompt系列6. lora指令微调扣细节-请冷静,1个小时真不够~
上一章介绍了如何基于APE+SELF自动化构建指令微调样本。这一章咱就把微调跑起来,主要介绍以Lora为首的低参数微调原理,环境配置,微调代码,以及大模型训练中显存和耗时优化的相关技术细节
风雨中的小七
2023/04/29
10.5K1
解密Prompt系列6. lora指令微调扣细节-请冷静,1个小时真不够~
用腾讯Cloud Studio一键免费部署AI大模型
AI大模型部署到本地很耗资源,需要很大的内存和硬盘,很多电脑都满足不了要求。而且部署过程很复杂,非专业人士很难上手。
AIGC部落
2024/07/22
1.7K0
用腾讯Cloud Studio一键免费部署AI大模型
相关推荐
【AI大模型】基于ChatGLM-6b从零开始本地部署语言模型,步骤详细无坑版
更多 >
LV.1
澳门大学在读博士
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档